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Abstract
High brightness/high intensity beams play an important

role in accelerator based applications by driving x-ray free

electron laser (FEL) radiation, producing spallation neutrons

and neutrinos, and generating new particles in high energy

colliders. In this paper, we report on recent advances in

modeling the high brightness electron beam with application

to the next generation FEL light sources and in modeling

space-charge effects in high intensity proton accelerators.

START-TO-END SIMULATION OF
MICROBUNCHING INSTABILITY
EXPERIMENT IN AN FEL LINAC

The x-ray FEL provides a great tool for scientific discover-

ies in chemistry, physics, biology and material science. The

microbunching instability seeded by shot noise and driven

by collective effects (primarily space charge), can signif-

icantly degrade the quality of the electron beam before it

enters the FEL undulators. Without proper control of the

instability, the large final electron beam energy spread and

phase space filamentation degrade the x-ray FEL perfor-

mance [1–7]. The microbunching instability experiments

recently carried out at the LCLS [8] provides a good op-

portunity to validate the computational model used in the

simulation [9]. In the microbunching measurement at LCLS,

the X-band transverse deflecting cavity (XTCAV) diagnos-

tic [10] is located downstream of the undulator before the

dump to measure the longitudinal phase space of the electron

beam through the entire accelerator. The start-to-end beam

dynamics simulations using the real number of electrons

were done using a 3D parallel beam dynamics simulation

framework IMPACT [11,12]. It includes a time-dependent

3D space-charge code module IMPACT-T for injector model-

ing and a position-dependent 3D space-charge code module

for linac and beam transport system model. The simulation

starts from the generation of photo-electrons at the photo-

cathode following the initial laser pulse distribution and the

given initial thermal emittance. The electron macroparticles

out of the cathode will be subject to both the external fields

from a DC/RF gun and solenoid, and the space-charge/image

charge fields from the Coulomb interaction of the particles

among themselves. After exiting from the injector, the elec-

tron macroparticle will transport through a linear accelerator

and beam transport system that includes laser heater, bunch

compressors, accelerating RF cavities, harmonic linearizer,

and magnetic focusing elements. Besides the 3D space-

charge effects, the simulation also includes coherent syn-

chrotron radiation (CSR) effects through a bending magnet,
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incoherent synchrotron radiation inside the bending magnet,

RF cavity structure wakefield, and resistive wall wakefield.

In the simulations, we track the beam down to the XTCAV

screen and compare with the measurements. Figure 1 shows

the final longitudinal phase space after the XTCAV from the

experimental observation and from the simulation with laser

heater turned off for the 1 kA study case.
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Figure 1: Measurement (top) and simulation (bottom) of

the final longitudinal phase space distribution with the laser

heater off. Beam current is 1 kA, with bunch charge 180 pC.

The bunch head is to the right.

Here, a strong phase space fluctuation due to the mi-

crobunching instability can be seen from both the measure-

ment and the simulation. There is no external seeded initial

modulation. This large fluctuation arises from the shot-noise

inside the beam and is amplified by collective effects, espe-

cially space charge effects through the accelerator.

The microbunching instability can be suppressed through

Landau damping by increasing the electron beam uncorre-

lated energy spread before the bunch compressor using the

laser heater. Figure 2 shows the final longitudinal phase

space after the XTCAV from both the measurement and

the simulation with extra 19 keV uncorrelated slice energy

spread from the laser heater. The phase space fluctuation is

significantly reduced with the use of the laser heater. This

is observed in both the measurement and the simulation.
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Figure 2: Measurement (top) and simulation (bottom) of

the final longitudinal phase space distribution with the laser

heater at 19 keV.

The simulation also shows a similar time-energy correlation

in the longitudinal phase space to the measurement. The

energy dip around the head of the distribution (at ∼15 μm in

Fig. 2) comes from the effects of resistive wall wakefield in

the long, narrow undulator chamber. The dip near the tail of

the distribution is due to the longitudinal space-charge and

coherent synchrotron radiation effects from the large current

spike near the tail of the electron beam.

GLOBAL OPTIMIZATION OF A NEXT
GENERATION LIGHT SOURCE DESIGN
In previous studies, the design optimizations of the injec-

tor and the linac were done separately. In recent study, we

combined the control parameters in the injector and the linac

together into a single group of control parameters through

start-to-end simulation for global beam dynamics design

optimization [13]. Figure 3 shows a schematic plot of the

global optimization including both the injector control pa-

rameters and the linac control parameters in the start-to-end

beam dynamics optimization. Here, the start-to-end sim-

ulation is treated as an objective function in the parallel

multi-objective optimizer. The parallel optimizer will call

the IMPACT simulation by passing the injector control pa-

rameters and the linac control parameters into the objective

function. The injector control parameters normally include

laser pulse transverse size and length, RF gun amplitude

and phase, solenoid strength, buncher and boosting cavity

amplitudes and phases. The linac control parameters include

linac section 1 cavity amplitude and phase, harmonic lin-

earizer amplitude and phase, bunch compressor 1 bending

angle, linac section 2 cavity amplitude and phase, bunch

compressor 2 bending angle, and so on.

Figure 3: A schematic diagram of the global beam dynamics

optimization.

Instead of starting with direct global optimization in the

entire control parameter space, we start the optimization with

reduced control parameter space that contains only the in-

jector control parameters. The two objective functions, final

project transverse emittance and rms bunch length (directly

related to peak current) at the exit of the injector are opti-

mized subject to a number of constraints. These constraints

are final electron beam energy, beam energy chirp, longi-

tudinal phase space nonlinearity, and so on. After a Pareto

optimal front is found for these two objective functions at the

exit of the injector, these optimal injector control parameters

are combined with some randomly sampled control parame-

ter solutions in the linac. Using the optimal injector control

parameters as a partial initial component in the global con-

trol parameter solution significantly saves the computational

time and speeds up the convergence of the final global solu-

tion. During the global beam dynamics optimization, one of

the objective (transverse emittance) from the original injec-

tor optimization becomes a constraint to the new objective

functions. Those solutions at the exit of the injector that

can not satisfy this constraint for final start-to-end optimiza-

tion will be automatically excluded at the beginning of the

global optimization. Two objective functions are defined for

the global longitudinal beam dynamics optimization. These

two functions are fraction of charge and rms energy spread

inside a given longitudinal window. The output from the

injector such as energy, emittance, and energy spread are

used as constraints for the global optimization. Besides the

constraint at the exit of the injector, we also put constraints

at the final linac output such as energy, peak current etc.

As an application, we applied the above global multi-

objective beam dynamics optimization tool to an LCLS-II

design optimization with a 20 pC charge. The LCLS-II

is a high repetition rate (1 MHz) x-ray FEL that will de-

liver photons of energy between 200 eV and 5 keV [14,15].

For the global longitudinal beam dynamics optimization of

this accelerator, we have defined 22 control parameters: 12

in the injector, 10 in the linac. Figure 4 shows the Pareto

front of the two objective functions from the global opti-
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Figure 4: The Pareto front from the global beam dynamics

optimization and from the linac only optimization using one

optimal injector solution.

mization. These two objective functions are the negative 
fraction of charge inside and the rms energy spread inside 
a window between −7 and 9 μm. In this plot, we also 
show the Pareto front from only the linac optimization 
using a solution from the injector as an initial distribution. It 
is seen that the Pareto front from the global optimization is 
signifi-cantly better than that from the linac only 
optimization. For the same amount of charge inside the 
window, the global solution has 40% less energy spread in 
some region. For the same level of the final rms energy 
spread, the global solution has 15% larger amount of 
charge. In this simula-tion besides those constraints for the 
beam at the exit of the injector, we also put constraints on 
the final beam energy to be greater than 3.9 GeV, final 
rms energy spread to be less than 2.5 MeV, fraction of 
charge inside the window be-tween 0.3 and 0.9. Figure 5 
shows the final electron beam current profile from a 
solution without and with global de-sign optimization. It is 
seen that the final current profile is significantly improved 
through the global optimization. This results in more than 
50% improvement in the final FEL radiation pulse energy 
[16].

A FULLY SYMPLECTIC MODEL FOR
SELF-CONSISTENT SPACE-CHARGE

SIMULATION
The numerical symplectic integrator is important in long-

term tracking simulation in order to preserve phase space

structure. In the self-consistent symplectic particle-in-cell

(PIC) model [17, 18], macroparticle phase space coordinate

advancing through a single step τ can be given as:

ζ(τ) = M(τ)ζ(0)

= M1(τ/2)M2(τ)M1(τ/2)ζ(0) +O(τ3) (1)

where the transfer mapM1 corresponds to the single particle

Hamiltonian including external fields and the transfer map

M2 corresponds to the space-charge potential from themulti-

particle Coulomb interactions. The numerical integrator

Eq. 1 will be symplectic if both the transfer map M1 and

the transfer mapM2 are symplectic. For a coasting beam

inside a rectangular perfectly conducting pipe, the space-

charge potential can be obtained from the solution of the

Figure 5: The final electron beam current profile before (top)

and after (bottom) global optimization.

Poisson equation using a spectral method. The one-step

symplectic transfer map M2 of particle i from the space-

charge Hamiltonian is given as:

xi(τ) = xi(0) (2)

yi(τ) = yi(0) (3)

pxi(τ) = pxi(0) − τ4πK
∑
I

∑
J

∂S(xI − xi)
∂xi

×

S(yJ − yi)φ(xI , yJ ) (4)

pyi(τ) = pyi(0) − τ4πK
∑
I

∑
J

S(xI − xi) ×

∂S(yJ − yi)

∂yi
φ(xI , yJ ) (5)

where both pxi and pyi are normalized by the reference parti-
cle momentum p0, K = qI/(2πε0p0v20γ

2
0
) is the generalized

perveance, I is the beam current, ε0 is the permittivity of
vacuum, p0 is the momentum of the reference particle, v0
is the speed of the reference particle, γ0 is the relativistic
factor of the reference particle, S(x) is the unitless shape
function (also called deposition function in the PIC model),

and the φ is given as:

φ(xI , yJ ) =
4

ab

Nl∑
l=1

Nm∑
m=1

1

γ2
lm

∑
I ′

∑
J′

ρ̄(xI ′, yJ′ ) ×

sin(αl xI ′ ) sin(βmyJ′ ) sin(αl xI ) sin(βmyJ )

(6)

where a and b are the horizontal (x) and the vertical (y)
aperture sizes respectively, αl = lπ/a, βm = mπ/b, γ2

lm
=

α2
l
+ β2m, the integers I, J, I ′, and J ′ denote the two dimen-

sional computational grid index, and the summations with
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respect to those indices are limited to the range of a few local

grid points depending on the specific deposition function.

The density related function ρ̄(xI ′, yJ′ ) on the grid can be
obtained from:

ρ̄(xI ′, yJ′ ) =
1

Np

Np∑
j=1

S(xI ′ − xj)S(yJ′ − yj), (7)

In the PIC literature, compact shape functions are used in

the simulation. For example, a quadratic shape function can

be written as [19, 20]:

S(xI−xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
4
− ( xi−xI

Δx )2, |xi − xI | ≤ Δx/2
1
2
( 3
2
−

|xi−xI |
Δx )2, Δx/2 < |xi − xI |

≤ 3/2Δx
0 otherwise

(8)

∂S(xI − xi)
∂xi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2( xi−xI
Δx )/Δx, |xi − xI | ≤ Δx/2

(− 3
2
+

(xi−xI )
Δx )/Δx, Δx/2 < |xi − xI |

≤ 3/2Δx, xi > xI
( 3
2
+

(xi−xI )
Δx )/Δx, Δx/2 < |xi − xI |

≤ 3/2Δx, xi ≤ xI
0 otherwise

(9)

where Δx is the mesh size in x dimension. The same shape
function and its derivative can be applied to the y dimension.

Figure 6 shows the 4D emittance growth ( εx
εx0

εy
εy0

− 1)%

evolution from the symplectic PIC model and those from

the nonsymplectic PIC model with the same nominal step

size, from the nonsymplectic PIC model with one-half of the

nominal step size, and from the nonsymplectic PIC model

with one-quarter of the nominal step size. It is seen that

as the step size decreases, the emittance growth from the

nonsymplectic PIC model converges towards that from the

symplectic PIC model.

Figure 6: Four dimensional emittance growth evolution from

the symplectic PIC model, and the nonsymplectic spectral

PIC.

ANALYSIS AND MITIGATION OF
ARTIFICIAL EMITTANCE GROWTH
In the long-term macroparticle space-charge tracking sim-

ulation, evenwith the use of self-consistent symplectic space-

charge model, there still exists numerical emittance growth.

The cause of this numerical artificial emittance growth can

be understood using a one-dimensional model. Following

the spectral method used in the above symplectic PIC model

for the space-charge potential, we calculated the sine func-

tion expansion mode amplitude from a smooth density dis-

tribution function on the grid and from a macroparticle sam-

pled distribution function depositing onto the grid. Here, the

amplitude of density mode l from the sampled macroparticle

deposition is given as:

ρl =
1

Np

2

NgΔx

∑
i

∑
I

S(xI − xi) sin(αl xi) (10)

where Np is the total number of macroparticles and Ng is

the total number of grid cells. Figure 7 shows the mode

amplitude as a function of mode number from the smooth

Gaussian function on the grid, from the linear particle depo-

sition, from the quadratic particle deposition, and from the

Gaussian kernel particle deposition on the grid using 25,000
macroparticles and 128 grid cells. Here, the Gaussian kernel

Figure 7: The spectral mode amplitude of a Gaussian dis-

tribution as a function of mode number from the smooth

Gaussian function on the grid (red), from the linear par-

ticle deposition (green), the quadratic particle deposition

(blue), and the Gaussian kernel particle deposition on the

grid (magenta).

particle deposition shape function is defined as:

S(xI − xi) =

{
exp (−

(xi−xI )
2

2σ2 ); |xi − xI | ≤ 3.5σ

0; otherwise
(11)

and σ is the chosen as the mesh size. It is seen that for the
smooth Gaussian distribution function, with mode number

beyond 20, the mode amplitude is nearly zero while the mode

amplitude from the macroparticle deposition fluctuates with

a magnitude of about 10−4. Those nonzero high frequency

modes cause fluctuation in density distribution and induce

extra numerical emittance growth. The higher order deposi-

tion scheme spreads the macroparitcle across multiple grid

points and reduces the density fluctuation. However, the

Gaussian kernel deposition is computationally much more

expensive in comparison to the other two deposition meth-

ods.

The above fluctuation of the density mode amplitude from

macroparticle deposition can be estimated quantitatively us-
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ing the standard deviation (or variance) of the mode ampli-

tude. Given the mode amplitude ρl in Eq. 10, the variance
of ρl is given as:

var(ρl) =
1

Np
var(

2

NgΔx

∑
I

S(xI − xi) sin(αl xi)) (12)

where

var(
2

NgΔx

∑
I

S(xI − xi) sin(αl xi)) =

1

Np
(

2

NgΔx
)2
∑
i

[
∑
I

S(xI − xi) sin(αl xi)]2 − (ρl)2 (13)

Figure 8 shows the mode amplitude standard deviation as a

function of mode number for the above Gaussian function by

using the linear deposition, the quadratic deposition, and the

Gaussian kernel deposition. The mode amplitude standard

deviation is small at small mode number and grows quickly

to 10−4 level and start to decrease after about 10 modes.

The standard deviation among the three deposition schemes

Figure 8: Mode amplitude standard deviation as a function

of mode number from the linear particle deposition (green),

the quadratic particle deposition (blue), and the Gaussian ker-

nel particle deposition on the grid (magenta) using 25,000
macroparticles and 128 grid cells.

becomes smaller as the order of deposition scheme becomes

higher.

The error in the charge density mode amplitude results in 
error in the solution of space-charge potential and the corre-
sponding force in momentum update in Eqs. 4-5. Assume 
that the error of force in x momentum update is δF, after 
one step τ, the emittance growth due to this error will be:

Δε ≈ (< x2 >< x ′δF > − < xx ′ >< xδF >)τ/ε +
1

2
(< x2 >< (δF)2 > − < xδF >2)τ2/ε (14)

where <> denotes the average with respect to the particle
distribution. If δF is a linear function of the position x, the
emittance growth will be zero as expected since the linear

force will not change the beam emittance. If δF is a random

error force with zero mean and independent of x and x ′, the

emittance growth would be

Δε

τ
≈

1

2
< x2 >< (δF)2 > τ/ε (15)

Assume that this error is due to mode amplitude fluctuation

of the finite number of macroparticles sampling, from the

above example, we see that < (δF)2 >∝ 1/Np. This sug-

gests that the numerical emittance growth would decrease

as more macroparticles are used. If δF is not a purely ran-

dom error force (e.g. due to systematic truncation error),

the dependence of the emittance growth on the number of

macroparticle is more complicated. Figure 9 shows the 4D

emittance growth rate from the emittance growth evolution

as a function of macroparticle number in a linear FODO lat-

tice and a nonlinear FODO and sextupole lattice. Here, the

Figure 9: The 4D emittance growth rate as a function of

the simulation macroparticle number using a linear FODO

lattice (top) and a FODO and sextupole lattice (bottom).

lattice consists of 10 focusing-drift-defocusing-drift (FODO)

lattice periods and one sextupole element per turn. The zero

current tune of the lattice is 2.417. With 30 A beam current,

the corresponding linear space-charge tune shift is 0.113. It
is seen that in the linear lattice (no sextupole), the emittance

growth rate scales as 1/Np which is expected from the ran-

dom sampling errors. In a nonlinear lattice, the emittance

growth rate scales close to 1/
√

Np . This slower scaling with

respect to the macroparticle number Np might be due to

the interaction between the numerical force error and the

nonlinear resonance.

The charge density fluctuation from the macroparticle

sampling can be further smoothed out by using a numeri-

cal filter in frequency domain besides employing the shape

function for particle deposition. Instead of using a standard

cut-off method that removes all modes beyond a given mode

number (i.e. cut-off frequency), we proposed using an am-

plitude threshold method to remove unwanted modes. The

mode with an amplitude below the threshold value is re-
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moved from the density distribution. The advantage of this

method is instead of removing all high frequency modes,

it will keep the high frequency modes with large ampli-

tudes. These modes can represent real physics structures

inside the beam. The threshold also removes the unphysical

low frequency modes associated with the small number of

macroparticle sampling. Here, we explored two threshold

methods. In the first threshold method, the threshold value is

calculated from a given fraction of the maximum amplitude

of the density spectral distribution. In the second method,

the threshold value is defined as a few standard deviations

of the mode amplitude as shown in the one-dimensional

Gaussian function example. The mode with an amplitude

below the threshold value is regarded as numerical sampling

error due to the use of small number of macroparticles and is

removed from the density distribution. The advantage of the

first method is that the threshold value is readily attainable

from the density spectral distribution. The disadvantage of

this method is that the threshold fraction is an external sup-

plied hyperparameter. The advantage of the second method

is that the threshold value is calculated dynamically through

the simulation. The disadvantage of this method is the high

computational cost to obtain the standard deviation of each

mode. The total computational cost of those standard devia-

tions is proportional to the number of modes multiplied by

the number of macroparticles.

Figure 10: The 4D emittance growth using 64 × 64, 32 × 32, 
16 × 16 modes (top) and with 0 (no filtering) with 0.01, 0.05 
and 0.1 threshold filtering (bottom) of charge density distri-
bution using 25k macroparticles in a FODO and sextupole 
lattice.

We ran the simulation of 30A proton beam transport in

the lattice including nonlinear sextupole element. The 4D

emittance growth evolutions using the brute force cut-off and

the threshold filtering are shown in Fig. 10. It is seen that

even with 16 × 16 mode cut-off filtering, there still exists

significant emittance growth, while a threshold value 0.1
helps significantly lower the emittance growth. Using the

four-sigma standard deviation threshold value yields similar

emittance growth to the fraction threshold (0.1) as shown in
Fig. 11. Those emittance growths include both the physical

resonance driven emittance growth and the numerical error

driven artificial emittance growth.

Figure 11: 4D emittance growth with one sigma, two sigma, 
four sigma standard devation and 0.1 maximum amplitude 
threshold filtering of charge density distribution using 25k 
macroparticles in a FODO and sextupole lattice.

SUMMARY
In this paper, we have shown that the microbunching insta-

bility associated with the high brightness electron beam in a

x-ray FEL linac experiment can be well reproduced through

the start-to-end simulation using real number of electrons.

The global design optimization including both the injector

control parameters and the linac control parameters signifi-

cantly improves the final electron beam longitudinal phase

space distribution. The accuracy of simulating a high in-

tensity proton beam can be improved through the use of a

fully self-consistent symplectic space-charge model. The

artificial numerical emittance growth in the long-term space-

charge simulation can be mitigated by using a threshold

based numerical filter in frequency domain.
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