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Abstract
We demonstrate that the sparse grid combination tech-

nique, a scheme originally designed for grid based solvers
of high-dimensional partial differential equations, can be
effectively applied to reduce the noise of Particle-in-Cell
(PIC) simulations. This is because the sparse grids used in
the combination technique have large cells relative to a com-
parable regular grid, which, for a fixed overall number of
particles, increases the number of particles per cell, and thus
improves statistical resolution. In other words, sparse grids
can accelerate not only the computation of the electromag-
netic fields, but also the particle operations, which typically
dominate the computation and storage requirements.

INTRODUCTION
In charged beams in particle accelerators, the Coulomb

collision frequency is much smaller than the other frequen-
cies of interest, even at the highest achievable beam intensi-
ties. A kinetic description of the beam is therefore required,
in which one solves for the beam distribution function giving
the number of particles in an infinitesimal six-dimensional
phase space volume. Because of the high dimensionality of
the phase space volume, intense beam simulations are very
computationally intensive; even a modest grid resolution
for each of the six dimensions pushes the limits of today’s
largest supercomputers.

To circumvent this difficulty, particle based approaches
to the problem have been widely adopted, usually in the
form of the Particle-in-Cell (PIC) algorithm [1]. The PIC
method has the advantages of being conceptually intuitive,
being well-suited for massive parallelization, and only re-
quiring discretization of configuration space. Detailed PIC
simulations of intense charged beams are routinely run and
relied upon to explain experimental results and to design
new accelerators [2, 3]. Even so, the accuracy of these PIC
simulations remains limited due to the probabilistic nature of
the PIC scheme, which requires a large number of particles
to be simulated in order to reduce statistical noise. We will
indeed show in this article that the slow decay of this noise
with the number of simulated particles implies that for a
given target accuracy, standard PIC simulations may even be
more computationally intensive than grid based simulations.

In this work, we present a new algorithm which addresses
this unsatisfying state of affairs by reducing the noise in
PIC simulations. The algorithm is based on the sparse grid
combination technique, a method originally intended to ad-
dress the poor scaling of grid based PDE solvers with di-
mension [4]. We will explain how to apply the combination
∗ ricketson1@llnl.gov

technique in a PIC setting, and demonstrate its promise by
using our algorithm to solve standard problems in plasma
and beam physics. The structure of the article is as follows.
In the first Section, we compare the asymptotic run time
complexity of a standard grid based kinetic solver and a
standard PIC solver, and arrive at the conclusion that noise
reduction strategies need to be implemented for the PIC ap-
proach to be desirable from a complexity point of view. In
the second Section, we briefly present the sparse grid com-
bination technique in the simple yet enlightening context
of linear interpolation. The combination technique is the
central idea motivating our new scheme. In the third Section,
we explain how the combination technique can indeed be
favorably applied in the context of PIC solvers, and numer-
ically demonstrate the significant reduction in noise from
doing so in the fourth Section. The fifth Section focuses on
the limitations of our new sparse PIC scheme in its current,
somewhat naive implementation, and highlights directions
for further improvement. We provide a brief summary of
our work in the last Section.

THE CURSE OF DIMENSIONALITY VS
THE CURSE OF NOISE

It is well known that grid-based solvers for the kinetic
equations describing beam evolution scale badly with the
dimensionality of the problem. The computational complex-
ity κ of a grid-based code can be expressed, in the best case
scenario, as

κ ∼
h−d

∆t
,

where h is the grid size, ∆t is the time step, and d is the
dimension of the problem. If we consider a typical solver
which would be second-order accurate in space and time,
the numerical error ε scales like h2 and ∆t2, so numerical
error ε and run-time complexity κ can be related through
the scaling

κ ∼ ε−
d+1

2 .

The exponential dependence of κ on d is a major reason why
continuum kinetic simulations are computationally intensive.
It is often referred to as the curse of dimensionality.

Particle based algorithms such as the PIC algorithm ad-
dress the curse of dimensionality by approximating the dis-
tribution function in terms of macro-particles which evolve
in configuration space, which is at most three-dimensional.
If Np is the number of particles used in the simulation, we
can write

κ ∼
dNp

∆t
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At this point, it appears that the dependence of κ on dimen-
sion is much more favorable. However, the proper measure
is to consider the complexity for a certain level of numerical
error ε. The price one pays by adopting a particle based
approach is in its inherent statistical noise, which only de-
creases with the square root of the number of simulated
particles. Specifically, in a standard PIC scheme, if Nc is the
number of cells used and dX the number of dimensions of
the configuration space, ε ∼ (Np/Nc)

−1/2 ∼ N−(1/2)p h−dX /2,
ε ∼ h2, and ε ∼ ∆t2. Using these scalings in the formula
for κ, one finds

κ ∼ dε−(2.5+
dX )

2 .

One notes that because of the slow convergence of the nu-
merical error with the number of simulated particles, the
scaling of κ is not favorable for the PIC scheme for small
values of d and dX . Even for d = 6 and dX = 3, which
correspond to the largest values one needs to consider in
beam physics, κ depends more strongly on ε in a standard
PIC scheme than in a standard continuum scheme: ε−4 vs
ε−7/2. This is what we may call the curse of noise.

In the remainder of this article, we will present and ana-
lyze the performance of a numerical scheme we propose to
address the curse of noise in PIC simulations. The algorithm
is directly inspired from a numerical method known as the
sparse grid combination technique, which was originally
invented to tackle the curse of dimensionality of grid based
solvers for partial differential equations [4]. As we will show,
it can also be an efficient technique to address the curse of
noise in particle based solvers.

THE SPARSE GRID COMBINATION
TECHNIQUE: ILLUSTRATION WITH

INTERPOLATION
In this section, we present the fundamental idea under-

pinning the sparse grid combination technique by focusing
on its application in a key step of the PIC scheme, namely
the interpolation from values on a grid to points off the grid.
For the simplicity of the presentation, we will consider a
two-dimensional situation. However, the same ideas are ap-
plicable - and in fact more valuable - in three-dimensional
situations.

We consider a standard case in which we know the values
of the function u(x, y) on a Cartesian grid discretizing the
square [−1,1] × [−1,1], with grid width and height hx and
hy , and we wish to approximate u on the entire domain via
bilinear interpolation. The error between the exact function
u and its approximation u at a particular point off the grid is
given by the exact formula [4]
u(x, y) − u(x, y) = C1(hx)h2

x + C2(hy)h2
y + C3(hx, hy)h2

xh2
y .

(1)
where the Ci above are functions with a uniform upper bound.
In the absence of additional information about u, one typ-
ically chooses hx = hy = h and finds an error of O(h2).
Furthermore, the computational complexity κ of the optimal
scheme scales linearly in the number of grid points, so that

κ = O(h−2). We conclude that κ scales with the numerical
error ε according to κ ∼ ε−1. In arbitrary dimension D, the
same reasoning leads to the optimal complexity κ ∼ ε−D/2,
where we observe an exponential dependence on D – this is
precisely the curse of dimensionality.

The combination technique is designed to reduce the
strong dependence of κ on D by using cancellation across
different “sparser" grids. Suppose the desired resolution
is hN = 2−N for some positive integer N . Let hix = 2−i ,
h j
y = 2−j and ui, j be the approximation of u on the cor-

responding grid. Then, consider the quantity uN defined
by

uN =
∑

i+j=N+1
ui, j −

∑
i+j=N

ui, j . (2)

In each of the sums, i and j are strictly positive integers. The
combination (2) is depicted graphically in Figure 1.

Figure 1: A graphical depiction of the combination of grids
used in (2). (Top) The green ‘+’ signs represent grids that
give a positive contribution, while red ‘−’ signs are sub-
tracted. Cancellation arises from pairing neighboring grids
along vertical and horizontal axes. (Bottom) An illustration
of the sparse grids giving a positive contribution (in green),
and the sparse grids giving a negative contribution (in red),
for the case N = 4. The blue grid is the equivalent full grid
one would use in a standard PIC simulation

By considering Figure 1 and the error formula (1), we see
that a great deal of cancellation occurs in computing the error
corresponding to uN . Specifically, for any particular i be-
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tween 1 and N−1, a grid with horizontal spacing hix appears
exactly once in each of the two sums in (2). For those two
grids, the term C1(hx)h2

x that appears in (1) cancels exactly,
because it is independent of hy . The only contribution from
the O(h2

x) term thus comes from the grid with hx = 2−N .
Analogous reasoning for the y-direction leads to the result
u − uN =C1(hN )h2

N + C2(hN )h2
N (3)

+ h2
N

 1
4

∑
i+j=N+1

C3(hix, h
j
y) −

∑
i+j=N

C3(hix, h
j
y)

 ,
(4)

where we have used the fact that hixh j
y = hN/2 when i + j =

N + 1 and hixh j
y = hN when i + j = N . The expression

in braces contains 2N − 1 terms which are all uniformly
bounded by constants, so we find that

|u − uN | = O(Nh2
N ) = O(h2

N | log hN |). (5)
In other words, uN approximates u nearly as well as an ap-
proximate solution using hx = hy = 2−N . This is illustrated
in Figure 2, in which we plot the maximum error when inter-
polating the function u(x, y) = sin(2πx) cos(3πy) at 50 ran-
domly located off-grid points in the square [−1,1] × [−1,1].
For each value of N , the interpolation error for the 50 points
are plotted, with black dots for the sparse grids technique,
and red stars for standard linear interpolation. The results
confirm our asymptotic scalings. We however note a draw-
back of the sparse grid combination technique, which is
explicit in this figure and which we will return to later in this
article: the leading term in the sparse grid error depends on
C3, which is proportional to the fourth-order mixed deriva-
tive uxxyy . This is the reason the constant for the purple
curve in Figure 2 is larger than the constant for the yellow
curve, and highlights the fact that the sparse grid technique
requires functions to be quite smooth to be more efficient
than the standard scheme.

Now, to understand why this technique leads to a favor-
able run time complexity, observe that each grid used in the
combination technique has O(h−1

N ) grid points, and there
are O(N) grids, implying the scaling κ = O(h−1

N | log hN |),
which we can write in terms of the error ε: κ ∼ ε−1/2 | log ε |2.
For three dimensional problems, this scaling generalizes
to [5]

κ ∼ ε−1/2 | log ε |4. (6)
We see that with sparse grids, the dimensionality of the
problem affects the complexity of the algorithm only through
a weak logarithmic dependence. At least asymptotically, one
can thus achieve the same accuracy considerably faster with
the combination technique than with a single regular grid.

COMBINING SPARSE GRIDS WITH PIC
Sparse grids are not limited to interpolation, and can

also be applied to another expensive stage in a standard
PIC scheme, in which we assign a charge density to each
macroparticle, through the introduction of a shape functions
S. To see why this is so, note that the numerical error of ap-
proximating the true particle density ρ with the approximate

Figure 2: Numerical error as a function of the number of
grid points N for the linear interpolation of the u(x, y) =
sin(2πx) cos(3πy) at randomly located off-grid points in the
square [−1,1] × [−1,1]. The black dots correspond to the
error obtained with the sparse grids combination technique,
and the red stars correspond to the error obtained with stan-
dard interpolation. The asymptotic scalings O(N−2) and
O(N−2 log N) are shown with continuous lines for compari-
son.

density % can be written as [5]
ρ(xk)− %(xk) = C1(hx)h2

x+C2(hy)h2
y+C3(hx, hy)h2

xh2
y+ξk,

(7)
where ξk is a random variable with E[ξk] = 0 and Var[ξk] ≈
4Qρ(xk )

9
1

hxhyNp
, with Q the total charge of the beam. The

first three terms on the right-hand side of Eq. (7) can be
interpreted as the grid-based error of the scheme, while the
last term is the particle sampling error. The grid based er-
ror has exactly the same form as in Eq. (1), so applying
the combination technique to the evaluation of % will yield
the same benefits as before for this contribution to the total
error. Furthermore, we have shown in [5] that the sparse
grids combination technique also eliminates the curse of
dimensionality for the particle sampling error, which scales
as εsamp ∼ | log hN |

D−1(NphN )
−1/2 in a sparse grids im-

plementation of a problem with spatial dimension D. These
results prompt us to consider the following sparse grids mod-
ification to the standard PIC algorithm:

(i) Push particles exactly as in standard PIC.

(ii) Assign to each particle a sequence of shape functions
Si, j(x− xp) = τ(2i(x − xp))τ(2j(y − yp))/2i+j , where
τ is the “hat" function such that τ(x) = 1− |x | if |x | ≤ 1
and τ(x) = 0 otherwise, and approximate the overall
charge density via

ρ ≈ % =
∑

i+j=n+1
%i, j −

∑
i+j=n

%i, j, (8)

where %i, j is defined at grid points xk ,` = (k2−i, `2−j)
by

%i, j(xk ,`) =
Q
Np

∑
p

Si, j(xp − xk ,`) (9)
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and extended to the entire domain using bilinear inter-
polation.

(iii) Use a grid-based Poisson solver to compute ϕi, j and
Ei, j by solving −∇2ϕi, j = %i, j

(iv) Evaluate E at the particle positions xp via

E(xp) =
∑

i+j=n+1
Ei, j(xp) −

∑
i+j=n

Ei, j(xp). (10)

Use this to repeat step i.

The run time complexity κ in terms of the error ε of this
sparse-PIC algorithm is κ ∼ D Np

∆t ∼ Dε−3 | log ε |3(D−1) and
depends weakly on the dimension of the problem [5]. The
improvement over standard PIC can be intuitively understood
in the following way. The figure of merit for the statistical
error in a PIC scheme is the number of particles per cell
Pc = Np/Nc , where Nc is the number of cells. Since Nc

scales inversely with the cell volume, Nc ∼ h−3 on a regular
grid in 3-D. However, on a 3-D sparse grid, Nc ∼ (4h)−1.
We thus achieve many more particles per cell, even with the
total particle number fixed, by using a hierarchy of sparse
grids. Observe furthermore that in a typical PIC scheme,
the cell size has to be smaller than the DeBye length in all
dimensions. In contrast, in sparse PIC only few grids have
to resolve the DeBye length, and when they do, they only
do so in one cell direction. In the next section, we will show
that these theoretical results are confirmed in practice, with
significant speed up as compared to a standard PIC scheme.

In addition to the stark algorithmic advantages described
above, sparse PIC also holds the promise of tremendous
benefit in massively parallel implementations. On mod-
ern distributed memory architectures, PIC’s spatial grid is
typically domain-decomposed across many compute nodes.
Thus, at each time step, particle data must be moved onto the
node corresponding to its location on the grid. This creates
considerable communication and load-balancing overhead,
both of which play increasing roles in determining overall
computation time as architectures advance. The sparse com-
bination grids being promoted here, however, require far
less memory to store than their full-grid counterparts - for
example, a 2048× 2048× 2048 full grid of double precision
floats requires 64 gigabytes of storage, while the analogous
sparse combination grid requires only 1.44 megabytes. With
sparse grids, it thus becomes trivially cheap to replicate the
entire spatial grid on every compute node. By doing so,
particles may remain on a single node for the entirety of the
simulation, eliminating data motion and making load bal-
ancing for particle operations trivial - one simply initializes
each node with exactly the same number of particles!

NUMERICAL EXAMPLE
To illustrate noise reduction through the sparse grids com-

bination technique, we consider the time evolution of a Gaus-
sian electron distribution in a periodic simulation domain.
Two things are expected to happen: 1) the electron distri-
bution is subject to periodic Langmuir oscillations at the

plasma frequency; 2) the amplitude of the density distribu-
tion decreases due to nonlinear Landau damping. This is
indeed what we observed. The measure of interest for this
article is the level of statistical noise in the density distribu-
tion after one Langmuir oscillation, which can be visualized
in Figure 3. This figure demonstrates the remarkable sav-
ings in terms of computer time and memory usage sparse
grids bring about: with 100 times fewer particles, the sparse-
PIC scheme yields comparable accuracy as the standard PIC
scheme.

Since sparse grids are designed to combat the curse of
dimensionality, the savings are even more significant for
3-dimensional simulations, as we have shown for Landau
damping in three dimensions in [5]. We chose not to plot
the results here, because they are not as visually striking.
However, we will highlight the central conclusions. We
found that sparse PIC consistently uses less memory than
standard PIC for a given target accuracy, often by an order
of magnitude. For a target error in the electron density,
sparse PIC also consistently uses less computation time than
standard PIC; for the electric field, which is less affected by
sampling noise, the computation times can be comparable.

A WORD OF CAUTION
This article summarizes very recent progress for a project

that is still in its infancy. We therefore would like to empha-
size drawbacks of the sparse grids technique as presented
here, which one will need to address in order to obtain a
scheme which is indeed superior to the standard PIC scheme
in most situations of physical interest. First, it is clear from
the presentation in the third Section (“The Sparse Grid Com-
bination Technique: Illustration with Interpolation”) that
the combination technique requires a structured grid. This
may not be too stringent a constraint for the simulation of
the acceleration phase in cyclotrons, but may be more chal-
lenging in other situations, such as axial injection into the
cyclotron [3]. Furthermore, as we also highlighted in the
third Section, the combination technique is not well suited for
functions which have fine structure in all directions, which
can be understood from the fact that the sparse grids never
have fine resolution in all directions. Put differently, sparse
grids perform best when the structure of the solution is
aligned with the grid in a tensor product-like structure [6].
We have verified this empirically in [5] by considering a
physical problem for which the solution is more efficiently
represented in cylindrical coordinates. We found that in
this situation the performance of the standard PIC scheme
was superior to that of the sparse PIC scheme in the simple
Cartesian implementation presented in this article.

Because our work is still at a very early stage, we do not
see these drawbacks as condemning the sparse PIC algorithm
to only be used for the very specific cases considered here.
Instead, it is a motivation to improve the young version of our
scheme we presented in this article, in order to make it more
robust and versatile. A promising avenue for improvement is
to rely on higher order interpolation and higher order shape
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Regular grid, Np ≈ 2 × 109

Sparse Grid, Np ≈ 107

Regular Grid, Np ≈ 107

Figure 3: Time snapshots of the electron density from three
simulations of the same nonlinear Landau damping problem.
All have 1024 × 1024 effective resolution. Compared to the
top figure, the sparse grid solution (middle) has comparable
statistical resolution but runs 30 times faster. Compared to
the bottom figure, the sparse scheme runs in comparable
time, but with considerably improved statistics.

functions, in order to reduce the grid-based error due to the
sparse grids combination technique. Combining the sparse
grids combination technique with adaptive mesh refinement

[7] may also have a strong potential, as it would allow us to
better resolve the fine scale structures the sparse grids are
missing. Finally, one could numerically construct optimized
coordinate systems to be used by the sparse-PIC solver as
the solution evolves, which would be designed to optimally
align with the solution at each time step.

CONCLUSION
We have presented a new strategy for reducing statisti-

cal noise in PIC simulations based on the sparse grid com-
bination technique, a numerical method which had previ-
ously only been considered for grid based solvers. We found
that our algorithm could lead to major savings in memory
and computation time because the number of particles re-
quired to reach a certain level of accuracy is drastically re-
duced as compared to the requirements for the standard PIC
scheme. This is because the sparse grids used in our nu-
merical scheme all have larger cells than in a standard PIC
scheme, thus increasing the number of particle per cells for a
given total number of particles. And by virtue of the sparse
grid combination technique, the price we pay for this is only
a slight increase in the grid-based error.

Our straightforward algorithm underperforms in situa-
tions in which the solution is far from aligning with the
directions of the grid and has fine structure in all dimensions.
We are currently considering improvements to our scheme
to tackle these issues.
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