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Abstract
Extracting the coefficients of Fourier-Bessel series, known

as pseudo-multipoles or generalized gradients, from mag-
netic measurements of accelerator magnets involves techni-
cal and mathematical challenges. First, a novel design of a
short, rotating-coil magnetometer is required that does not
intercept any axial field component of the magnet. More-
over, displacing short magnetometers, step-by-step along
the magnet axis, yields a convolution of the local multipole
field errors and the sensitivity (test function) of the induc-
tion coil. The deconvolution must then content with the low
signal-to-noise ratio of the measurands, which are integrated
voltages corresponding to spatial flux distributions. Finally,
the compensation schemes, as implemented on long coils
used for measuring the integrated field harmonics, cannot
be applied to short magnetometers. All this requires careful
design of experiment to derive the optimal length of the in-
duction coil, the step size of the scan, and the highest order
of pseudo-multipoles in the field reconstruction. This paper
presents the theory of the measurement method, the data ac-
quisition and deconvolution, and the design and production
of a saddle-shaped, rotating-coil magnetometer.

INTRODUCTION
The magnetic measurement section within the magnet

group of CERN’s technology department is responsible for
the qualification of all superconducting and normal conduct-
ing magnets in CERN’s accelerator complex. To supplement
the long rotating-coil magnetometers and stretched-wire sys-
tems (the section’s workhorses for magnetic measurements)
we have recently developed moving induction-coil arrays, ax-
ial and transversal rotating-coil scanners [1], and induction-
coil transducers for solenoidal magnets. Applications of
these tools require, however, a sophisticated post-processing
step based on the regularity conditions of electromagnetic
fields. To this end, the magnet bores can be considered
as trivial domains, i.e., simply connected and source-free
with piecewise smooth, closed and consistently oriented
boundaries. Calculating the transversal field harmonics as a
function of the coordinate in the magnet’s axial direction, for
example, by using the numerical field calculation program
ROXIE [2], or measuring these harmonics with a very short,
rotating-coil scanner, allows the extraction of the coefficients
of Fourier-Bessel series, known as pseudo-multipoles [3] or
generalized gradients [4].

However, the raw measurement data from the field trans-
ducers are induced voltages that are integrated using a dig-
ital integrator, triggered by an angular encoder. Develop-
ing these signals into Fourier series results in convoluted

functions of the spacial flux distribution, because strictly
speaking, point-like measurements of the magnetic flux den-
sity are not possible.1 Before such signals can be used as
boundary data for harmonic analysis or boundary-element
methods (BEM), a deconvolution is required.

A careful design of experiment is required, considering a
low signal-to-noise ratio of the measurand, the sensitivity
of the induction coil with respect to transversal harmonics,
the step-size of the longitudinal scan, and the compensation
schemes for the main-field component. In this paper we
present the design and production of the transversal-field
scanner and the challenges in applying the pseudo-multipole
theory to measurement data.

Figure 1: Representation of the magnetic flux density in 3
different planes of an orbit corrector for the ELENA project.
Notice the large z-component in the end fields. Computed
with the CERN field computation program ROXIE [2].

PSEUDO MULTIPOLES
The local field distribution in short magnets, such as the

one shown in Fig. 1, cannot be expressed by the usual field
harmonics (Fourier series) for the integrated fields because
they do not constitute a complete orthogonal basis of the
1 Transversal Hall sensors come close but their active area (the Hall plate)

typically has a diameter of 2-3 mm.
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transversal field distribution in the magnet ends. In other
words, the field distribution in the magnet extremities is not
holomorphic and therefore does not obey the rn−1 scaling
laws derived for the integrated fields. Following Erdelyi [5]
and Caspi [6], and using a combination of a Fourier series
in ϕ and a power series in r around the axis yields

φm =
∞∑
n=1

rn(C̃n(r, z) sin nϕ + D̃n(z) cos nϕ) , (1)

where

C̃n(r, z) :=

Cn,n(z) −
C
(2)
n,n(z)

4(n + 1)
r2 +

C
(4)
n,n(z)

32(n + 1)(n + 2)
r4 − . . . . (2)

In the interest of brevety, the similar expressions for the
skew components D̃n(z) have been omitted here. To re-
duce the burden on notation we will henceforth, and without
loss of generality, assume ideal magnets without skew field
component, i.e., Dn,n(z) = 0.

In three dimensions, the single harmonic component
(index n to describe the ϕ dependence) will contain pseudo
multipoles accounting for the transverse field components
no longer exhibiting a pure rn−1 dependence on the radius.
In the straight section of the magnet the partial derivatives
with respect to z vanish and the equations will become
identical with the well known 2D equations, as expected.
The field components at any radius within the bore of the
magnet are then given by Br = −µ0

∂φm

∂r , Bϕ = −µ0
1
r
∂φm

∂ϕ ,

and Bz = −µ0
∂φm

∂z . Consequently,

Br = −µ0

∞∑
n=1

rn−1Cn(r, z) sin nϕ ,

Bϕ = −µ0

∞∑
n=1

n rn−1C̃n(r, z) cos nϕ ,

Bz = −µ0

∞∑
n=1

rn
∂C̃n(r, z)

∂z
sin nϕ , (3)

where

Cn(r, z) :=

n Cn,n(z)−
(n + 2)C(2)n,n(z)

4(n + 1)
r2+

(n + 4)C(4)n,n(z)
32(n + 1)(n + 2)

r4 − . . . . (4)

A dipole field (n = 1) rolling off at the magnet’s extrem-
ity gives rise to a pseudo sextupole and higher-order (odd
and only odd) pseudo multipoles, while a quadrupole field
gives rise to higher-order, even pseudo multipoles. Pseudo-
multipole terms have the same angular dependence as the
leading terms Cn,n(z).

It is common practice to speak of feed down when lower-
order multipoles are generated from higher-order multipoles
by axis misalignment of the magnet or the measurement
shaft. We might equally speak of feed-up when higher-order
multipoles are generated due to field variations of the lower-
order multipoles along z. Since the pseudo terms are even

derivatives of the leading terms, their z integrals over the
entire magnet will be zero, as to be expected.

It is important to note that the coefficients Cn,n(z) are still
unknown at this stage. This is the reason for choosing calli-
graphic characters in the typesetting. Although the Cn,n(z)
are the leading terms of the series expansion, they are not
identical to the Bn(z) components in the Fourier expansion
of the (measured or calculated) transverse field. Fortunately,
because all the pseudo-multipole terms can be calculated
from the leading terms, the problem is reduced to extracting
the Cn,n(z) from measured or calculated data on the domain
boundary. It is worth mentioning, that even if these terms
were confused, the reconstructed field would still obey the
3D Laplace equation. A powerful Maxwellification so to
say.

THE TRANSVERSAL FIELD SCANNER
Measuring the transversal field harmonics with a short

rotating coil (measurement radius r0) yields a convoluted
function of the multipole field components Bn(r0, z). Using
this data we must solve the differential equations

Bn(r0, z) = −µ0 rn−1
0 Cn(r0, z) =

− µ0 rn−1
0

(
n Cn,n(z) −

(n + 2)C(2)n,n(z)
4(n + 1)

r2
0+

(n + 4)C(4)n,n(z)
32(n + 1)(n + 2)

r4
0 − . . .

)
. (5)

for n = 1,3,5, . . . ,N . Applying a Fourier transform to the
functions Bn(r0, z) and Cn,n(z) it follows from Eq. (5):

F {Cn,n(z)} =
−F {Bn(r0, z)}

µ0 rn−1
0 UK

n

, (6)

where

UK
n :=

(
n −
(n + 2)(iω)2

4(n + 1)
r2
0 +

(n + 4)(iω)4

32(n + 1)(n + 2)
r4
0 − . . .

)
is the feed-up term of order n, up to the highest z−derivative
K. Let B̃n denote the measured function given by the field
harmonic Bn convoluted by the z-dependent coil-sensitivity
factors sn of the measurement coil.2 In this case, the Fourier
transform of Cn,n(z) yields

F {Cn,n(z)} =
−F {B̃n(r0, z)}
F {sn(r0, z)}

1
µ0 rn−1

0 UK
n

. (7)

If we were able to produce an infinitely short induction
coil, sn would become a delta function in z and its Fourier
transform would become one.

The Fourier transform of the leading term F {Cn,n(z)}
can be extracted from the Fourier transform of the measured
data B̃n(r0, z). The final step then consists in recovering the
function Cn,n(z) from the spectrum by means of the Fourier
integral

Cn,n(z) =
1

2π

∫ ∞

−∞

F {Cn,n(ω)} eiωz dω . (8)
2 The calculation of the sensitivity factors is deferred to the next sections.
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THE SENSOR DESIGN
The shafts used for the field measurements are usually an

assembly of induction coils of different radii which are series-
connected to compensate for the induced voltage signal for
the main dipole or quadrupole field component. The size and
arrangement of these coils is based on the rn−1 scaling laws
derived from the 2D field solution. The flux linkage through
the induction coil can be calculated from the Stokes theorem:
Φ(ϕ) = N

∫
A

B ·da = N
∫
A

curl A ·da, and the z-component
of the magnetic vector potential can be expressed as

Az (rc, z) =
∞∑
n=1

rc
n
(Bn(rc, z) cos nϕ) , (9)

assuming that there are no skew components in the field.
The flux linkage through the induction coil can then be
calculated from

Φ(ϕ) =

∫ z0+`/2

z0−`/2

(
∞∑
n=1

stan
n (Bn(rc, z) sin nϕ

)
dz , (10)

where stan
n = 2N

n rc sin
(
nδ
2

)
, is called the coil-sensitivity

function, and δ is the coil’s opening angle that may be a
function of z. The coil radius is denoted rc. The physical
unit of the sensitivity is [stan

n ] = 1 m. If the coil is short and
used to map the field in the magnet end region, a number of
challenges arise: Because of the absence of a simple scaling
law between the multipole coefficients at r1 and r2, these
cannot be disentangled from the measurements, when the
signals are compensated on the analogue side. The induction
coil must be saddle-shaped, i.e., its radius on the shaft must
be constant, because otherwise, a voltage is induced in the
induction-coil ends when it is rotated around its axis; see
Fig. 2.

Because the induction coil is shorter than the magnet and
the size of its coil ends cannot be neglected with respect to its
straight section, the sensitivity stan

n will become a function of
z. This, in turn, becomes the test function of the convolution
of the harmonic content along z.

A solution for these problems is the nesting of induction
coils of the same radius and choosing the number of turns and
their opening angles to compensate for the main dipole field.
The shaft design is based on PCB technology, manufactured
as a flexible stack of two double-layer PCBs, bent around a
precision machined shaft; see Figs. 3 and 4. Spring-loaded
roller bearings allow the displacement and centering of the
shaft within an aluminum tube, which is inserted in the
magnet bore. A clamping mechanism is used for fixing the
flexible PCB on the shaft in order to reduce the tolerances
on the coil’s radius and alignment.

The main coil in the center has a small opening angle
to provide sensitivity to the higher-order field components.
Some constraints apply due to the manufacturing process
of the PCB. A compromise had to be found between the
maximum number of turns, and thus the coil’s sensitivity,
and the lengths of the coil ends.

The compensation coil should be sensitive to the dipole
component only. This is achieved by a shell-type coil with

dr

dr

dr

dr

x

y

z

B

B v

v

Figure 2: A (classical) tangential coil rotated by a certain
angle traces out two patches of the cylindrical mandrel but
also the surfaces between the chord and the apex, which
intercepts the Bz field component. Such a coil must therefore
be made long enough so that it covers the entire fringe-field
region of the magnet and it is thus guaranteed that the Bz

components are zero at the coil ends.

Figure 3: Image of the sensor showing the flexible PCB coil
and clamping mechanism. The ends of the nested induction
coils are all on the same radius and therefore trace out no
surface when rotated. Therefore no voltage is induced by
the axial field component.

about 60 degree opening angle. This opening angle and the
spacing between turns has been optimized to fine-tune the
dipole sensitivity of the compensation coil.

For short coils, the end-effects must be considered; they
will lead to a different geometric-mean length and magnetic
length of the coil depending on the multipole order. The
graphs of the compensated sensitivity functions in the end
region of the induction coils are given in Fig. 5.

An uncertainty analysis yielded a maximum allowable
error in the track positions of about 30 µm and in the ra-
dius positioning of about ±200 µm.3 Metrological measure-
ments were performed using a coordinate measuring ma-
chine (CMM). The uncertainty in the spanned surface, due
to the tolerances in the track positioning in the PCB pro-

3 Although the measurement radius can be calibrated in a reference
quadrupole magnet, a radius deviating from nominal (19 mm), will lead
to a lower compensation ratio because of a change in arc length.
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Figure 4: Image of the PCB coil. Notice the additional
tracks (dashed) and copper patches designed to minimize
the concentration of corrosive acid between the tracks of the
compensation coil.

duction, and the uncertainty of the coil calibration in the
reference magnets are both on the order of one unit in 104.
While the presence of open circuits is obvious, short circuits
between turns are difficult to detect with resistance measure-
ments, because of the varying thickness of the tracks. For
that reason we still need to validate the sensor in the straight
section of a long reference dipole magnet.

The outer diameter of the shaft (and its bearings) is guided
in a tube of 50 mm inner diameter. In this way the transducer
fits into the aperture of the section’s reference dipole.4 The
mole design reduces the space needed for a displacement
system; the shaft can either be positioned using a cableway
or extension tube, or it can be mounted on an arm of a
displacement stage (mapper).

MEASUREMENT UNCERTAINTY
In order to study the deconvolution and the design of

experiments, we must first discuss the highest achievable ac-
curacy to date, which is by a transversal-field scanner of the
classical design with radial coils in PCB technology. In the
center of the reference dipole magnet there is no axial field
component and therefore the results will yield a meaningful
lower bound for the measurement uncertainty. An uncom-
pensated measurement, using only the main coil, results in
a precision of about one unit in 105. With a compensation
ratio of the main component exceeding 3000, the precision
is increased to one unit in 107. From this result, the known
surface of the induction coil, and the maximum flux den-
sity in the magnet, we can conclude that the minimum flux

4 Although magnets like the one shown in Fig. 1 constitute the ultimate
application of the saddle-shaped coil magnetometers, the metrological
characterization was done in the reference dipole and quadrupole magnets
featuring long and homogenous straight sections that can be used for
cross-calibration of the different coil transducers and Hall sensors.
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Figure 5: Sensitivity functions stan
n (z) along the axis of the

rotating-coil magnetometer (from the center to the coil-end
region). The straight section has been shortened by 20 mm to
better visualize the roll-off. Notice the compensation for the
main (dipole) field sensitivity s1; also notice the different
shapes of the roll-off, depending on the multipole order.
Because the compensation coil is longer than the central coil
(coil ends indicated by the vertical lines), the cross-section
of the central coil is designed to compensate for the end
effects, i.e., the overshoot into the negative values of s1.

linkage in the induction coil must be larger than 10−8 µVs.
Unfortunately, a compensation ratio of more than 1000 is not
achievable with the nested saddle-shaped coils. The design
value is about 630, limited by the different lengths of the
nested coils. The completed transducer achieves a compen-
sation ratio of no more than 27 because of the tolerance on
the measurement-coil radius.

Another uncertainty results from positioning errors (lon-
gitudinal position and instability of rotation) during the scan-
ning and measurement process. While the standard deviation
of the harmonics, extracted from the compensated signal,
is reduced by two-orders of magnitude, one would expect
more because of the high compensation ratio of 3000. This
is a result of the coil eccentricity and rotational instability.

For the longitudinal positioning error we obtain about
20 µm per meter distance from the laser tracker and about
60 µm for the alignment, resulting in a total uncertainty of
about 0.1 mm. In the case of integral measurements of a
long magnet, obtained by combining the results of multiple
position scans, this error stays below 10−4 as random errors
will average out. For local measurements in the magnet’s
fringe-field region we must expect uncertainties on the order
of 1–2% for a 100 mm long coil. This is severe because
feed-down corrections for axis misalignment cannot be done
as in the magnet straight section.
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We are therefore placing special attention on accurate
longitudinal positioning of the shaft, the stabilizing of the
rotation, and the centering within the magnet bore.

DECONVOLUTION OF THE MEASURED
SIGNALS

The challenge is now to find a suitable order n of the
pseudo-multipoles Cn,n and the highest order m of deriva-
tives C(m), in order to minimize the reconstruction uncer-
tainty of the local magnetic field. The uncertainty of the
method will also depend on the step size chosen for the dis-
placement of the transducer and on the signal-to-noise level
of the measurand.

Let B̃n(r0, zk) denote the measured, transversal field com-
ponent of order n, sampled at positions zk, k = 1, . . . ,K
along the magnet axis, affected by noise n(zk). In the follow-
ing, we omit the notation of the radial dependencies. The
noisy, convoluted signal is then given by

B̃n[k] = (sn ∗ Bn)[k] + n[k]. (11)

To save on notation we write

B̃n( f ) = sn( f )Bn( f ) + n( f ) (12)

instead of F {B̃[k]} = F {sn[k]}F {Bn[k]} + F {n[k]} for
the corresponding equation in the frequency domain. To re-
construct the transversal field harmonics we apply a discrete
filter g[k]:

B̂n[k] = g[k] ∗ B̃n[k], B̂n( f ) = g( f )B̃n( f ), (13)

where the hat denotes the reconstructed (estimated)
multipole-field distribution B̂n(zk); see Fig. 6.

Figure 6: Signal path in the frequency domain. We distin-
guish the estimated spectrum B̂n( f ), the measured spectrum
B̃n( f ) and the true harmonic Bn( f ).

A straightforward method of deconvolution uses the in-
verse of the sensitivity spectrum g( f ) = 1/sn( f ), which
results in an amplification of the noise n( f ) for frequencies
where the spectrum sn( f ) has small values. An alternative
approach is to use a filter that minimizes the expected mean-
squared error in the frequency domain:

E
[
e2] = E [��Bn( f ) − B̂n( f )

��2]
= E

[���Bn( f ) − g( f )
(
sn( f )Bn( f ) + n( f )

)���2] .
(14)

Assuming that the noise is uncorrelated and has zero mean, a
minimum of the mean-squared error, Eq. (14), can be found
by the Wiener-Kolmogorov filter

gW ( f ) =
1

sn( f )
|sn( f )|2

|sn( f )|2 +
E [n( f )]2

E [Bn( f )]2

, (15)

where the second expression in the denominator is the
inverse of the expected signal-to-noise ratio SNR( f ) =
E [Bn( f )]2 /E [N( f )]2. Filtering with gW ( f ) will therefore
damp frequencies with low SNR( f ). The value of gW ( f )
will approach the inverse of the sensitivity sn( f )−1 for fre-
quencies with a high SNR( f ).

In Fig. 7 the deconvolution was applied to a noisy B̃3,
which was generated from simulations with added Gaussian
random noise. As expected, the convolution by the inverse

m

T

  10
-5

  T

T

m

Figure 7: Top: Simulated B̃3 along the axis of the magnet
shown in Fig. 1 with added Gaussian random noise, signal-
to-noise ratio of 10−4. Center: The deconvolution using the
inverse of the sensitivity spectrum and a filter g( f ) given by
Eq. (15) compared to the simulated B3(z). Bottom: Absolute
error |B3(z) − B̂3(z)|.

spectrum of sn( f ) leads to an amplification of the noise. The
absolute error between B3(z) and the Wiener deconvolution
lies below 2.5% of the maximum of B3(z).

DESIGN OF EXPERIMENT
The most sensitive parameters for the deconvolution of

the measurand are the coil length and the sampling step-size.
In order to be sensitive in all relevant frequencies of Bn( f ),
the spectrum of the sensitivities impulse response s( f ), i.e.,
the frequency spectrum of the induction coil’s sensitivity
function, should be non-vanishing in the frequency band
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imposed by the highest spatial frequency in the measurand.
To optimize the coil length (or estimate whether or not an
available transducer has high enough sensitivity) we consider
the sensitivity function as a rectangular pulse in the spacial
domain. Its spectrum will have the shape of a (sin x)/x
function, containing zeros at the frequencies fk = k/ls, for
k = {0,1, ...,K}, where ls is the length of the pulse, i.e.,
the hard-edge model of the induction coil. An infinitely
short and highly sensitive coil, corresponding to a Dirac-
shaped impulse response, is technically not possible. The
maximum sensitivity is limited by the number of turns in
one layer of the flexible PCB. As shown above, a minimum
flux linkage of Φmin = 10−8 Vs in the main induction coil is
required. Denoting the minimum required accuracy of field
harmonic by Bmin, the minimum length of the induction coil
can be estimated to ls,min = Φmin/(hsBmin), where hs is the
height of the coil’s impulse response in the hard-edge model.
Therefore the optimum coil length ls is given by

Φmin
hsBmin

< ls <
1

fn,max
, (16)

where fn,max denotes the expected (computed) highest fre-
quency in Bn( f ). In other words, the coil must be short
enough to resolve the highest spatial frequency, but long
enough to accommodate enough turns for a sufficiently high
sensitivity Sn. In this case, the shape of the sensitivity func-
tion is not critical for the Wiener deconvolution. Simula-
tions show that a smooth roll-off in the coil sensitivity is
even preferable; for the magnetic field distribution shown in
Fig. 7 the optimal ratio between the coil’s straight section l1
and its overall length ls is about 0.5. This yields sufficient
flexibility for the coil design. A higher sampling rate will
lead to a better resolution of the multipole-field distribution,
as the maximum meaningful frequency will increase by the
Nyquist sampling theorem. This implies that the maximum
step-size be

∆z ≤
1

2 fn,max
. (17)

The minimum step-size is, however, constraint by the posi-
tioning accuracy of 0.1 mm. Resolving frequencies of s( f )
higher than fn,max yields no improvement.

CONCLUSION
The theory of pseudo-multipoles is known from the lit-

erature. The extraction of the leading term in the Fourier-
Bessel series requires the solution of a differential equation
by means of a discrete Fourier transform. This yields a nat-
ural way to deconvolute the measured distribution of the

multipole content. We have studied and presented the limita-
tions of point-like measurements with Hall sensor stacks and
thus motivated the measurement technique using induction-
coil sensors. These require a novel design emplying saddle-
shaped, iso-perimetric coils in order to avoid interception of
the axial field component.

The compensation of the main signal cannot be accom-
plished with the classical arrangement of tangential (or ra-
dial) induction coils at different radii, because no easy scal-
ing law exists.

The study of the Wiener filter for the signal deconvolution
allows a design of experiment based on the optimal num-
ber of coefficients and required z-derivatives of the leading
terms, and the step size in the field-scanning process. Unfor-
tunately, the signal-to-noise ratio is nowhere near the values
obtained with standard rotating coil sensors.

Nevertheless, and to our knowledge for the first time, it
is possible to extract the transversal field components (and
only those) from measurements in the coil-end regions. A
reasonable approach will therefore be to validate the design
and construction of accelerator magnets using such sensors
and to gauge the numerical (FEM, BEM) models for the use
in beam-tracking studies. These can then be performed using
simulated field distributions that are sufficiently smooth to
extract higher-order pseudo-multipoles.

With the presented methodology and hardware it will also
be possible to better characterize fast-ramping magnets and
magnets with strong hysteresis effects, where 10−4 predictive
models do not exist.
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