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Abstract
We discuss the longitudinal beam dynamics in storage

rings in the presence of a higher-harmonic cavity (HHC)
system for bunch lengthening. We first review the general
conditions for HHC operations, either in active or passive
mode, assuming the stability of the system. For uniform
filling patterns, a distinction is made between operations
with a normal-conducting HHC, where optimal conditions
for bunch lengthening can be satisfied, and operations with
super-conducting HHC, where optimal conditions can be
met only approximately. The option to operate the NSLS-II
storage ring with a passive, super-conducting third harmonic
cavity (3HC) system is discussed next. The stability and
performance of the system in the presence of a gap in the
uniform filling, which corresponds to the present mode of
operation of the NSLS-II storage ring, is investigated with
self-consistent Vlasov-Fokker-Planck simulations performed
with the code SPACE [1].

INTRODUCTION
Higher-harmonic cavities (HHCs) play a crucial role for

stable operations of present and future low- emittance stor-
age rings. The primary benefic effect provided by the HHC
is bunch lengthening without energy spread increase, with
consequent beam lifetime improvement and reduction of
the effect of intrabeam scattering on the transverse emit-
tance [2]. Besides bunch lengthening, the highly nonlinear
potential well distortion produced by the HHC introduces
a strong dependence of the synchrotron tune on the ampli-
tude of synchrotron oscillations. The induced anharmonic
motion with enhanced synchrotron tune spread provides a
powerful mechanism, known as Landau damping, for the
suppression of collective instabilities. Moreover, the in-
crease in bunch length and synchrotron tune spread can
enhance the stabilizing effect of positive chromaticity on
the transverse oscillations and help to stabilize higher-order
head-tail modes [2]. The option considered for the NSLS-II
storage ring is to operate with a passive superconducting
3HC [3, 4], a choice motivated by the successful develop-
ment and operation of the superconducting 3HC system at
the ELETTRA [5] and SLS [6] storage rings, a system that
has been developed in the framework of the SUPER-3HC
project [7]. The SUPER-3HC project represented the first
superconducting application of a HHC system in storage
rings, taking advantage of the very high quality factor of
the superconducting cavity and the associated narrow band-
width, allowing for the tuning of the 3HC very near to the
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third harmonic of the beam, without exciting longitudinal
instabilities [5]. The success of the 3HC operation at the
ELETTRA storage ring is substantiated by a beam lifetime
improvement by more than a factor of three with respect to
the nominal value, an improvement that has led to a change
in the refilling frequency of the storage ring, allowing a re-
filling every 48 hr instead of every 24 hr, with benefit for the
reliability and stability of user’s operations and relevant ben-
efit even for the machine thermal stability [5]. The success
with the operation of a 3HC at the SLS storage ring is sub-
stantiated by a bunch lengthening up to a factor of three and a
beam lifetime increase greater than a factor of two, achieved
with stable conditions at the design current of 400 mA [6].
The success experienced at the ELETTRA and SLS storage
rings has clearly shown that the very high quality factor of
the superconducting HHC renders the performance of the
HHC system less sensitive to high-order modes (HOMs)
driven longitudinal coupled bunch instabilities, which is a
major issue with normal conducting HHCs, where powerful
longitudinal feedback systems are often needed for stable
operations. Performance limiting factors, however, such as
transients effects induced by non uniform filling patterns and
the beam phase instability [8], can be detrimental for stable
HHC operations, and need to be carefully investigated with
detailed design studies. Accurate numerical simulations rep-
resent an essential part of the aforementioned design studies,
with their goal to determine feasible conditions of operation
and their range of applicability. To this end, the stability and
performance of the passive superconducting 3HC system for
the NSLSI-II storage ring is studied numerically with the
parallel, particle tracking code SPACE [1], which allows to
follow self-consistently the dynamics of h bunches, where h
in the number of RF buckets, in arbitrary multi-bunch con-
figurations. The specific goal of the numerical simulations
is to determine stable HHC cavity settings and to study the
performance limitation due to a gap in the uniform filling,
which represents the nominal NSLS-II mode of operation.

OPERATIONS WITH
HIGHER-HARMONIC CAVITIES

In the discussion of the theoretical conditions for opti-
mal bunch lengthening, we assume a stable, beam loading
compensated HHC system characterized by an equilibrium
multi-bunch configuration. Radiation damping and quan-
tum fluctuations are excluded from the analysis. The overall
stability of the HHC system, including radiation damping
and quantum fluctuations, together with the inclusion of a
model for beam loading compensation, will be addressed in
the next section with time-dependent Vlasov-Fokker-Planck
simulations.
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Active Higher-Harmonic Cavity
We assume that the voltage V(τ) seen by a particle in the

beam with arrival time τ is

V(τ) = Vr f [sin(ωr f τ + φs) − r sin(mωr f τ + φm)] −
Us

e

=: Vc(τ) −
Us

e
, (1)

where Vr f is the amplitude of the voltage of the main rf
cavity, ωr f = hω0, where h is harmonic number and ω0 the
angular revolution frequency, m is the order of the HHC and
r the ratio of HHC to main cavity amplitude voltage , Us

energy loss per turn, e the electron charge, φs and φm the
phases of the synchronous particle in the main and HHC
respectively. Here Vc(τ) is the total rf voltage produced by
the main rf cavity and by HHC.

The longitudinal dynamics in the double RF system
described by Eq. (1) has been comprehensively discussed,
together with optimal conditions for bunch lengthening,
by Hofmann and S. Myers in 1980 [9]. See also [10]. Here
we summarize the main results.

Table 1: NSLSII Parameters

Parameter Symbol Value Unit

Energy reference particle E0 3 GeV
Average current I0 500 mA
Gap in the uniorm filling g 260
Harmonic number h 1320
Circumference C 792 m
Bunch duration στ 14.5 ps
Energy spread σp 0.00087
Energy loss per turn Us 674 keV
Momentum compaction α 0.00037
Revolution frequency f0 378.5 kHz

Table2: RFParameters Main (2 Cav ities) and 3HC(1Cavity)

Per Cavity Parameters Symbol Value Unit

main frequency ωr f 2π×499.68 MHz
HHC frequency 3ωr f 2π×1499.04 MHz

main voltage Vr f 1.7 MV
main shunt impedance RM 2.97 MΩ

main quality factor QM 66817
HHC shunt impedance RH 22880 MΩ

HHC quality factor QH 2.6 × 108
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Figure 1: a) Potential energy U(τ) without HHC (red line)
and with HHC (blue line) with parameters of the NSLS-II
storage ring (see Table 1) satisfying Eq. (5–7). b) Phase
space portrait corresponding to a) for E = 0.3.

To compensate for the energy loss Us, we require that
the voltage seen by the synchronous particle is zero, i.e.
V(0) = 0. In addition, we require V ′(0) = V ′′(0) = 0, where
′ = d/dτ. Thus

sin φs = r sin φm +
Us

eVr f
, (2)

cos φs = rm cos φm, (3)

sin φs = rm2 sin φm, (4)

which, solved for φs , φm and r give

sin φs =
m2

m2 − 1
sin φs0, sin φs0 =

Us

eVr f
, (5)

tan φm =
m sin φs0√

(m2 − 1)2 − m4 sin2 φs0
, (6)

r =
1
m

√
1 −

m2

m2 − 1
sin2 φs0. (7)

where we introduced φs0, the synchronous phase in absence
of the HHC. With the voltage given by Eq. (1), from the
Hamiltonian

H(τ, δ) =
η

2
δ2 +U(τ),

U(τ) =
eVr f

E0T0ωr f

[
cos(ωr f τ + φs) − cos φs +

r
m

cos φm

−
r
m

cos(mωr f τ + φm) + ωr f τ sin φs0

]
, (8)

follow the longitudinal equations of motion

Ûτ =
∂H
∂δ
= ηδ,

Ûδ = −
∂H
∂τ
=

eVr f

E0T0

[
sin(ωr f τ + φs) − r sin(mωr f τ + φm)

− sin φs0

]
, (9)

where Û= d/dt, η = α − γ−2
0 is the slippage factor, where

γ0 is the Lorentz factor, δ = (E − E0)/E0 is the relative
energy deviation with respect to the synchronous particle
with energy E0, and the arbitrary constant in the definition of
U(τ) has been chosen in order to satisfy U(0) = 0. Since U
does not depend explicitly on time, H is a constant of motion
and setting E = H we have δ(τ) = ±

√
2(E −U(τ))/η , E =

const.. In Fig. 1a we show the potential energy U(τ) with
only the main rf cavity (red line) and with a third-harmonic
cavity (blue line) with parameters satisfying Eqs. (5–7) for
the NSLS-II storage ring (see Table 1). In Fig. 1b we show
the corresponding phase space portrait for E = 0.3. The
optimal conditions satisfied by the voltage V(τ) induce a
bunch lengthening without an increase of the energy spread.
According to Table 1, r = 0.329 ≈ 1/3, thus the peak
voltage induced by the harmonic cavity system is roughly
one third the peak voltage Vr f of the main cavity system. In
the case of no energy loss (Us = 0) the conditions (2)-(4)
simplify to φs = φm = 0 and r = 1/m. In Fig.2a we plot the
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Figure 2: a) Potential energy U(τ) in the active case (m = 3) and for no energy loss (Us = 0). b) Synchrotron frequency
ωs for the quartic potential (red line) and synchrotron frequency ωs0 for the quadratic potential (blue line). c) Bunch
lengthening u vs. bunch length στm (w/o HHC).

potential energy U(τ) for m = 3 and different values of r.
For r = 4/9 the potential energy has two stable fixed points
close to ±150 ps.

Small Oscillations For small oscillations (τ � 1) the
potential energy U(τ) without HHC can be approximated by
a quadratic function of τ

U(τ) = −
eVr fωr f cos φs0

2E0T0
τ2 =:

ω2
s0

2η
τ2, (10)

while with the addition of the harmonic cavity the potential
given by Eq.(8) can be approximated by a quartic

U(τ) = −
eVr f (m2 − 1)ω3

r f
cos φs

24E0T0
τ4. (11)

For a potential energy satisfying U(−τ) = U(τ) and
U(τ) > 0 for τ > 0, the trajectory is confined in the
region [−τM , τM ] × [−δM , δM ] where τM and δM satisfy
U(τM ) = E and ηδ2

M/2 = E respectively, thus the ampli-
tude of the trajectory is d = 2τM . It can be shown that the
synchrotron frequencyωs for the quartic potential (11) reads

ωs(τM ) =
π

2

√
m2 − 1

6

√
cos φs
cos φs0

ωr fωs0

K(1/
√

2)
τM , (12)

where K is the complete integral of the first kind. The depen-
dence of the synchrotron frequency on τM provides Landau
damping for beam stability. In Fig. 2b we plot ωs as a func-
tion of τM . It can also be shown that the bunch lengthening
factor u for an equilibrium distribution ρe in the quartic
potential (11) reads

u :=
στL
στm

=

√
Γ(3/4)
Γ(1/4)

( 24 cos φs0

(m2 − 1)ω2
r f

cos φs

)1/4 1
√
στm

, (13)

where Γ is the Gamma function, στm = ησδ/ωs0 is the equi-
librium bunch length with only the main cavity, and στL is
the equilibrium bunch length with the harmonic cavity. The
bunch lengthening factor u as a function of στm is plotted
in Fig. 2c. With NSLS-II parameters (στm = στ) the bunch
lengthening factor reads u = 3.7.

Figure 3: RF phasor of the NSLS-II storage ring during oper-
ations with a stored beam current I0 = 300mA, Vr f = 3 MV,
φs = 164.5◦, θL = −17◦, Vb = 2062 kV, Vg = 2132 kV and
detuning angle ψ = 60◦.

Passive Higher-Harmonic Cavity
For passive HHC operations, the total RF voltage is given

by the sum of the voltage produced by the powered main
cavity and the beam voltage induced by the beam in both
cavities. We assume in this section that the main cavity is
beam loading compensated.

Operations with Normal-Conducting Cavities. In
the case of stationary bunches uniformly distributed around
the ring, and for a narrow-band resonator wake with fre-
quency ωr , shunt impedance Rs and quality factor Q, the
voltage acting on the beam reads

Vc(τ) = Vr f sin(φs + ωr f τ) − imRs cosψ cos(ψ + mωr f τ),
(14)

where iim = 2I0 ρ̃(ω) and the detuning angle ψ satisfies

tanψ = 2Qδ, δ =
1
2

( ωr

mωr f
−

mωr f

ωr

)
≈
ωr − mωr f

mωr f
. (15)

Here ρ̃(ω) is the Fourier transform of the bunch density
ρ(τ) satisfying ρ(−τ) = ρ(τ). For Gaussian bunches iim =
2I0e−

1
2 (mωr f στ )

2 . Imposing the same the conditions (2–4)
for the active HHC, by comparing Eq. (1) and Eq. (14) it
follows (0 < φs < π =⇒ 0 < ψ < π/2 =⇒ cosψ > 0)

tanψ = − cot φm = −m cot φs, (16)

Rs =
rVr f

iim cosψ
=

Vr f sin φs
iimm2 cos2 ψ

, (17)
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where we used sin φm = cosψ (tanψ = − cot φm =⇒ ψ =
φm − π/2 =⇒ sin φm = cosψ). Therefore the conditions
for passive HHC operations corresponding to the active case
(5–7) are

sin φs =
m2

m2 − 1
sin φs0, (18)

tanψ = −
√
(m2 − 1)2 − m4 sin2 φs0

m sin φs0
, (19)

Rs =
Vr f (m2 − 1)(1 − sin φs0)

iimm2 sin φs0
. (20)

An important difference to active case is that Rs is uniquely
determined and a function of the beam current I0. Notice,
however, that these conditions do not impose any constraint
on the value of Q, therefore do not determine uniquely the
detuning frequency ∆ω = ωr −mωr f . The optimal parame-
ters for passive HHC operations of the NSLS-II storage ring
according to Tables 1 and 2 are therefore sin φs = 0.4592,
tanψ = 5.8 =⇒ ψ = 80.22◦ and Rs = 9.02 MΩ.

Operations with Super-Conducting Cavities. Ac-
cording to Table 2, the shunt impedance of the HHC is
RH = 22880 MΩ, much bigger than the optimal value
Rs = 9.02 MΩ, so the optimal conditions for passive op-
erations can not be met. Good conditions, however, can be
found by comparing Eq. (1) and Eq. (14) at τ = 0, which
gives Rs = rVr f /(iim cosψ), and by noticing from Eq. (7)
that r ≈ 1/m, since to good approximation sin φ2

s0 � 1.
We therefore impose on the detuning angle ψ the condition
cosψ = Vr f /(miimRH ), which implies that the detuning
frequency ∆ωH approximately satisfies

∆ωH =
m2ωr f ibRHVr f

2QHVr f
, (21)

where we used Eq. (15) and the fact that sinψ � 1. With
parameters listed in Table 2, it follows that ∆ωH = 2π ×
58.24 kHz.

NUMERICAL SIMULATIONS
With the inclusion of a model for beam loading compen-

sation, time dependent simulations of the Vlasov-Fokker-
Planck equation allow for the study of the overall stability
of the HHC system. Moreover, numerical simulations allow
for the study of transient effects induced by arbitrary multi-
bunch configurations, such as a gap in the uniform filling
pattern for ion clearing, which corresponds to the nominal
configuration of the NSLS-II storage ring. The numerical
simulations of the Vlasov-Fokker-Planck equation discussed
in this paper are done with the parallel code SPACE, a par-
ticle tracking code that allows for the simultaneous study
of short- and long-range wakefield effects in storage rings.
The general strategy adopted by SPACE to study multibunch
effects is to distribute each bunch to one processor, each
with N simulations particles representing the bunch popula-
tion, thus performing the short- and long-range wakefield

calculation in serial and parallel respectively. For more
details on the code SPACE see [1]. For steady state beam
loading compensation, the algorithm implemented in SPACE
is based on the standard phasor diagram, shown in Fig. 3
with parameters of one of the operational settings of the
NSLS-II storage ring. The numerical simulations discussed
in this paper have been done on the supercomputers Cori
and Edison at NERSC [11]. The equations of motion for
bunch n (n = 0, . . . , h − 1), shown here without radiation
damping and quantum fluctuations, for the general NSLS-II
operations with two main cavities and one HC read

Ûτ = ηδ,

Ûδ =
e

E0T0

[ 2∑
i=1

Vgr ,i cosψi sin(ωr f τ + φs − θL,i + ψi)

− Vn(τ, s) −
Us

e

]
, (22)

where Vgr ,i , ψi and θL,i (i = 1,2) correspond to the gen-
erator voltage, detuning angle and load angle of the two
main cavities respectively, and Vn(τ, s) is the total beam
loading voltage acting on bunch n. The numerical simula-
tions discussed in this paper assume the two main cavities
with same beam loading parameters, which correspond to
the standard mode of operation of the NSLS-II storage ring.
By projecting the current phasors shown in Fig. 3 along and
perpendicular to the RF voltage phasor, Vgr and ψ satisfy

tanψ =
(
1 +

iim,M
i0

sin φs
)

tan θL +
iim,M

i0
cos φs, (23)

Vgr =
Vr f

cos θL

(
1 +

iim,M
i0

sin φs
)
. (24)

where iim,M = 2I0 ρ̃(ωr f ) is the image current in the main
cavity, and i0 = Vr f /RM . In the analysis of the performance
of the NSLS-II HHC system, we study first the case with
a uniform filling pattern, and compare the results with the
nominal case, which corresponds to a gap of 260 bunches,
(80% fractional filling), and with the case with a gap of 130
bunches (90% fractional filling). In the discussion that fol-
lows we omit the subscript H to label the detuning frequency
of the HHC.

Uniorm Fillings
In Fig. 4 we show numerical simulations for values of the

HHC detuning frequency ∆ f = 45 kHz, 55 kHz and 65 kHz,
above and below the value ∆ f = 58.24 kHz calculated in
Sect. II for good bunch lengthening conditions. The longi-
tudinal density of the bunches after 100,000 turns is shown
in Fig. 4a for ∆ f = 45 kHz, in Fig. 4b for ∆ f = 55 kHz
and Fig. 4c for ∆ f = 65 kHz. The bunch lengthening
is uniform across the bunch train for ∆ f = 55 kHz and
∆ f = 65 kHz, with values στ = 50 ps and στ = 36 ps re-
spectively, as shown in Fig. 4e and Fig. 4f, corresponding
to the bunch lengthening factors u = 3.45 and u = 2.48.
For ∆ f = 45 kHz, the longitudinal density of the bunches
shows a double peaked structure and a non-uniform bunch
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Figure 4: Numerical simulations in the case of uniform filling with detuning frequency ∆ f = 45 kHz, 55 kHz and 65 kHz.

lengthening, as shown in Fig. 4a, Fig. 4g and Fig. 4l. Long
term simulations up to 500,000 turns, as plotted in Fig. 4a
and Fig. 4g, show that for ∆ f = 45 kHz the HHC system
is weakly unstable, signing the transition to an “overstretch-
ing” regime, with average bunch length across the train of
≈ 70 ps. The potential well of bunch n = 0, showing two
local minima, is shown by the red trace in Fig. 4n.

Gap in the Uniform Filling: g = 130 and g = 260
The case of a gap in the uniform filling corresponds to

a train of M = h − g bunches, where h is the harmonic
number and g is the gap. The case with nominal gap, g =
260, corresponding to a 80% fractional filling, is compared
with the case g = 130, corresponding to a 90% fractional
filling. The main effect introduced by a gap in the uniform
filling in a monotonic variation of the bunch centroid across
the train, and a reduced, non uniform bunch lengthening.
Fig. 5 and Fig. 6 show numerical simulations up to 100,000
turns with gaps g = 130 and g = 260 respectively, for
the same HHC detuning frequencies of the uniform case.
The monotonic variation of the bunch centroid across the
train is evident from the longitudinal density of the bunches

shown in Fig. 5a-c, from the time evolution of the bunch
centroids shown in Fig. 5g-i, and from Fig. 5m, where it can
be noticed that the range of variation of the bunch centroids
increases with the decrease of the HHC detuning frequency.
Fig. 5d-f and Fig. 5l show the non uniform bunch lengthening
across the train, with a similar average value 〈στ〉 ≈ 35 ps
for the different detuning frequencies. We notice that for
∆ f = 45 kHz the bunches in the center of the train have
longer bunch length than the bunches in the periphery of
the train. The case of nominal gap, g = 260, is discussed
in Fig. 6. A detuning frequency threshold is observed in
this case. For detuning frequencies above the threshold,
as shown for ∆ f = 65 kHz in Fig. 6c, Fig. 6f and Fig. 6l
a stable equilibrium is reached after 100,000 turns, with
average bunch length across the train 〈στ〉 ≈ 27 ps, while for
detuning frequencies below threshold, as shown in Fig. 6a,
Fig. 6d for ∆ f = 45 kHz and Fig. 6b, Fig. 6e and Fig. 6h
for ∆ f = 55 kHz, an unstable regime with saturation is
observed, with both the bunch lengths and bunch centroids
exhibiting a well defined mode of oscillation. The numerical
simulations discussed so far have been done with load angle
θL = 0. In the attempt to improve stability, the two unstable

with the case g = 130, corresponding to a 90% fractional
filling. The main effect introduced by a gap in the uniform
filling in a monotonic variation of the bunch centroid across
the train, and a reduced, non uniform bunch lengthening.
Fig. 5 and Fig. 6 show numerical simulations up to 100,000
turns with gaps g = 130 and g = 260 respectively, for
the same HHC detuning frequencies of the uniform case.
The monotonic variation of the bunch centroid across the
train is evident from the longitudinal density of the bunches
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Figure 5: Numerical simulations up to 100,000 turns with a gap g = 130. HHC detuning frequencies as in Fig. 4.

configurations at the nominal gap g = 260 for ∆ f = 45 kHz
and 55 kHz have been simulated with θL < 0. In both cases
the numerical results show that the introduction of a negative
load angle is partially effective in stabilizing the HHC system,
with the “stabilizing” load angle in the range [−20◦,0◦] for
∆ f = 45 kHz, and [−40◦,−20◦] for ∆ f = 55 kHz.

CONCLUSION
The numerical result clearly show a reduction in both

performance and stability of the HHC system with the in-
crease of the gap in the uniform filling, with the case of a gap
g = 130, corresponding to a 90% fractional filling, stable at
all the detuning frequencies considered. On the other hand,
the nominal case with g = 260, corresponding to a 80% frac-
tional filling, has shown to be unstable for some values of the
detuning frequencies. Moreover, the case with g = 130 has
shown a superior performance in terms of bunch lengthening
with respect to the nominal case. The performance of stable
HHC settings for the nominal case g = 260 and the case
g = 130, as a function of detuning frequency ∆ f and load
angle θL , is shown in Fig. 7, both in terms of average bunch
lengthening and uniformity of the bunch centroid and bunch

length across the train. The average bunch lengthening fac-
tor for the 80% and 90% fractional filling is approximately 2
and 2.5 respectively, to be compared with the bunch length-
ening factor of the uniform filling case, which, according
to Fig. 4g, is approximately 3.5 for ∆ = 55 kHz. The per-
formance reduction in the average bunch lengthening due
to a gap in the uniform filling is therefore 45% for g = 260
and 30% for g = 130. Machine studies are planned at the
NSLS-II storage ring to revisit the need of the nominal 80%
fractional filling pattern for ion clearing, with the goal to
increase the fractional filling towards a more uniform filling
pattern. Arbitrary, more general multibunch configurations,
such as filling patterns with multiple, smaller gaps than the
nominal, are also under consideration. To this end, an an-
alytical calculation to determine the beam loading voltage
induced by arbitrary, stationary bunches has been done and
implemented in a numerical code for fast parametric scans
and guidance in Vlasov-Fokker-Planck simulations of the
HHC system [12].
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Figure 6: Numerical simulations up to 100,000 turns with nominal gap g = 260. HHC detuning frequencies as in Fig. 4.

Figure 7: Performance of the HHC stable settings as a func-
tion of the detuning frequency ∆ and load angle θL for
g = 260 (80% fractional filling) and g = 130 (90% frac-
tional filling). The bunch length and bunch centroid are
labeled with BL and BC respectively.
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