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Abstract
Reed presented a 1D mean-field model of initially cold

pancake-beam expansion demonstrating that the evolution
of the entire spatial distribution can be solved for all time
where the 1D assumption holds. This model is relevant to
ultra-fast electron microscopy as it describes the evolution of
the distribution within the photoelectron gun, and this model
is similar to Anderson’s sheet beam density time dependence
except that Reed’s theory applies to freely expanding beams
instead of beams within a focussing channel. Our recent
work generalized Reed’s analysis to cylindrical and spheri-
cal geometries demonstrating the presence of a shock that
is seen in the Coulomb explosion literature under these ge-
ometries and further discussed the absence of a shock in
the 1D model. This work is relevant as it offers a mecha-
nistic explanation of the ring-like density shock that arises
in non-equilibrium pancake-beams within the photoelec-
tron gun; moreover, this shock is coincident with a region
of high-temperature electrons providing an explanation for
why experimentally aperturing the electron bunch results
in a greater than 10-fold improvement in beam emittance,
possibly even resulting in bunch emittance below the intrin-
sic emittance of the cathode. However, this theory has been
developed for cold-bunches, i.e. bunches of electrons with 0
initial momentum. Here, we briefly review this new theory
and extend the cylindrical- and spherical- symmetric distri-
bution to ensembles that have non-zero initial momentum
distributions that are symmetric but otherwise unrestricted
demonstrating how initial velocity distributions couple to
the shocks seen in the less general formulation. Further, we
derive and demonstrate how the laminar condition may be
propagated through beam foci.

INTRODUCTION
Freely expanding ensembles of charged particles are fun-

damental to accelerator physics. Although continuous beams
near the particle source are relatively diffuse, bunched beams
can reach densities where space-charge effects dominate the
expansion. In such a regime, the expansion dynamics are
similar to the dynamics of Coulomb explosion that are well
studied in the laser ablation field, where it is well estab-
lished that shocks that form at the periphery of the distri-
bution [1–6]. Our group recently found that in an ultrafast
electron microscope experimentally aperturing a high den-
sity bunch of electrons after they exit the photocathode gun
can result in a significant improvement to the brightness.
Simulation results suggest that this effect is due to a den-
∗ zerbe@pa.msu.edu
† duxbury@pa.msu.edu

sity shock, akin to the shock seen in the Coulomb explosion
literature, of high-temperature electrons that form at the
longitudinal median of the bunch and migrate out to the
transverse edge [7].

It has been known for decades that charge redistribution
near the particle source is the origin of a major portion of the
emittance seen in standard beams [8]. More than 30 years
ago, Anderson presented 1D and cylindrical mean-field fluid
models of beam dynamics for ensembles of particles with ar-
bitrary initial distributions relevant while the beam remains
laminar [9]. These models describe the transverse density
and emittance evolution in the presence of a focussing force,
and specifically they provide insight into emittance oscilla-
tion that is important for emittance compensation [10,11].
While it is reasonable to make an analogy between that mech-
anism and the freely expanding charge redistribution we see
during Coulomb explosion, Anderson’s models are inap-
propriate for a freely expanding bunch as they assume the
focussing force is non-zero and radially inward. Therefore,
other models are needed to describe the freely expanding
case.

Within the ultrafast electron microscopy (UEM) literature,
numerous works postulated 1D models for non-relativistic
longitudinal free expansion [12–14], and Reed eventually
settled upon the same mean-field fluid approach used by
Anderson but without any external fields [15]. Again this
model was to describe the longitudinal density evolution
of initially dense “pancake” bunches — named so as they
have much shorter longitudinal widths than transverse radius
— that can be assumed to be planar symmetric instead of
Anderson’s description of a cylindrical symmetric beam’s
transverse density evolution. Reed’s mean-field model ac-
curately describes the longitudinal expansion while planar
symmetry can be assumed [15]. However, Reed was con-
cerned that no Coulomb explosion-like shock was seen in
the model even when non-uniform initial conditions were
assumed, in stark disagreement to what had been previously
found within the Coulomb explosion literature. We recently
demonstrated that such a shock cannot occur in the non-
relativistic 1D model without careful tuning of the initial
velocity distribution [16]. In contrast, we showed that these
shocks spontaneously occur in higher dimensions for non-
uniform distributions [16], so that the theoretical results
found in the UEM community are consistent with the shocks
found in the Coulomb explosion literature.

To demonstrate these results, we generalized Reed’s
model to higher dimension by deriving closed form ana-
lytic expressions that describe arbitrary density evolution
under cylindrical and spherical symmetries. We discovered
that the shocks arise due to relative bunching of particles
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that can be described by dimensionally-dependent evolution
functions, fd with d = 2,3 for the cylindrical and spherical
symmetric cases, respectively, that are multiplied by the fac-
tor D0d =

d
2

(
ρ0
ρ̄0
− 1

)
where ρ0 = ρ0(r0) and ρ̄0 = ρ̄0(r0)

represent the initial probability-like density and initial av-
erage probability-like density at r0, respectively. D0d is
determined entirely from the initial conditions of the distri-
bution, and captures the difference in behavior from that of a
uniform distribution, as for the uniform distribution D0d = 0.
In that case, the density evolution is free from the changes
caused by the function fd and follow a simple power law.
We note that most analysis in accelerator physics is based
on ensembles with spatially uniform distributions, where
the complications introduced by the function fd are seldom
treated analytically, though in many experimental contexts
non-uniform distributions are endemic.

As density peaks may arise in the planar symmetric model
by carefully tuning the initial velocity distribution, we postu-
late that the peaks under cylindrical and spherical symmetry
should be able to be likewise controlled by the initial ve-
locity distribution. However, our previous model assumes
cold initial conditions. Here we present an extension of our
previous model that includes arbitrary initial velocities that
can be written as a single-value function of the radius of
the appropriate symmetry. We demonstrate that this model
reproduces particle-in-cell (PIC), implemented in warp [17],
simulations. We also show that this model breaks down
when an inward velocity that is linear in the radius is as-
sumed for the Gaussian distribution; however, the model
correctly predicts the focus and subsequent expansion when
a more complicated, non-linear initial velocity profile is
assumed.

DERIVATION
In this section, we present a derivation of the density evo-

lution equations with arbitrary initial velocity, v0 = v0(r) in
the r̂ direction, under cylindrical and spherical symmetries.
This analysis follows from our earlier work [16] with the
following differences: 1) we assume non-zero radial veloc-
ity and 2) we adopt slightly modified notation that we have
recently developed for a relativistic extension of our initial
analysis (un-published).

Consider an ensemble of particles with cylindrical sym-
metry. Define the time-dependent probability-like density
(fraction of entire distribution per unit area), ρ2(r, t), and
denote the initial probability-like density as ρ02 = ρ02(r0) =
ρ2(r0, t = 0). With the initial conditions, we have,

P02 =

∫ r0

0
2πrρ02(r)dr, E0(r0) = E02 =

ΛtotP02
2πε0r0

,

where Λtot is the total charge per unit length along the cylin-
drical charge distribution and P02 is the cumulative proba-
bility. Notice that the quantity Λ0P02 represents the charge
per unit length inside radius r0, so further define the average

probabilistic-like density as

ρ̄02 =
P02

πr2
0
. (1)

Consider an ensemble of particles with spherical sym-
metry. Define the time-dependent probability-like density
(fraction of entire distribution per unit volume), ρ3(r, t), and
denote the initial probability-like density as ρ03 = ρ03(r0) =
ρ3(r0, t = 0). With the initial conditions, we have,

P03 =

∫ r0

0
4πr2ρ03(r)dr, E0(r0) = E03 =

QtotP03

4πε0r2
0
,

where Qtot is the total charge in the system and P03 is the
cumalitive probability. Again notice that P03 represents the
fraction of the particles that lie inside radius r0 and QtotP03
gives the charge inside radius r0, so further define the average
probability-like density as

ρ̄03 =
P03

4
3πr3

0
. (2)

Assuming the distribution undergoes laminar flow, the
electric field experienced by a particle at radial position
r(r0, t) under cylindrical and spherical symmetries, respec-
tively, is

E2(r) = E02
r0
r
, E3(r) = E03

( r0
r

)2
.

Under the laminar assumption, E02 and E03 are constants,
and the change in potential energy is found by integrating
the force qE , and we find,

∆U2 = Er2 ln
( r0

r

)
, ∆U3 = Er3

( r0
r
− 1

)
(3)

for the cylindrical and spherical cases respectively. Here
Er2 =

qΛtotP02
2πε0

for the cylindrical case and where Er3 =
qQtotP03
4πε0r0

for the spherical case. Notice that by this convention,
∆Ud < 0. Further introduce a fictitious velocity, vrd for d =

2,3, such that vrd = +
√

2Erd
m . Using conservation of energy

in the non-relativistic regime with initial energy E0 =
1
2 mv2

0 ,
we can solve for the velocity,

v2
vr2
= ±

√
E0
Er2
+ ln

(
r
r0

)
,

v3
vr3
= ±

√
E0
Er3
+ 1 −

r0
r
,

where the± is determined by whether the particle is traveling
away or toward the origin and the subscript again indicates
the appropriate symmetry. In other words, the velocity equa-
tions become double valued for r < r0 when v0 < 0 as
both the negative and positive square roots occur; specif-
ically, there is a radius, rtd < r0 with d = 1,2, at which
the Lagrangian particle reaches 0 velocity and turns-around,
and the velocities between this rtd and r0 are symmetric —
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differing only by their sign. By setting v = 0, rtd can be
derived

rt2 = r0e
−

v2
0

v2
r2 , rt3 =

r0

1 + v2
0

v2
r3

. (4)

With this notation, the velocities can be rewritten as

v2
vt2
= ±

√
ln

(
r

rt2

)
,

v3
vt3
= ±

√
1 −

rt3
r
, (5)

where vt2 =
√

qΛtotP02
πmε0

= vr2 and vt3 =
√

qQtotP03
2πmε0rt3

=

vr3

√
r0
rt3

. We use these turn-around radii to define the av-
erage probability-like densities

ρ̄t2 =
P02

πr2
t2
, ρ̄t3 =

P03
4
3πr3

t3
, (6)

and the associated plasma frequencies

ωt2 =

√
qΛtot ρ̄t2
ε0m

=
vt2
rt2
, ωt3 =

√
2
3

√
qQtot ρ̄t3
ε0m

=
vt3
rt3
,

(7)

thus effectively mapping this problem to the cold freely-
expanding case. The main difference, now, is that rtd is a
function of both r0 and v0, and ωt3 is now a function of both
r0 and v0 instead of solely r0. Furthermore, rtd does not nec-
essary occur at the same time for all Lagrangian particles,
so it is not precisely cold expansion-like but is mathemati-
cally similar. This will complicate the the derivation of r ′

where ′ ≡ d
dr0

, but it will much simplify the derivation and
interpretation of the time-position relation.

To derive the time-position relation for a specific La-
grangian particle, we consider the normal time-position rela-
tion with r0 replaced by rtd. If v0 > 0, then the time-position
relation is the same as the cold expansion relations less the
time it would take the particle to travel from rtd to r0, call
this td for d = 1,2. If v0 < 0, then the particle needs to
travel from r0 to rtd before undergoing cold free expansion.
As this process is symmetric to the expansion from rtd to
r0, the alteration is again ttd. Denote tftd as the portion of
the time-position relation defined by the cold free-expansion
from rtd. Thus, t = ±tftd − ttd where the ± sign is determined
by whether the Lagrangian particle is moving away or to-
ward the origin, respectively, td has the same sign as v0, and
d = 1,2 for the cylindrical and spherical symmetric case,
respectively. The parameter tftd can be determined from our
previous work:

tft2 =
2
ωt2

ey
2
2 F (y2) , (8)

tft3 =
1
ωt3

(
tanh−1 y3 +

y3

1 − y2
3

)
. (9)

where y2 =

√
ln

(
r
rt2

)
, y3 =

√
1 − rt3

r , and F(·) represents

the Dawson function. From these equations, we can also
obtain ttd

tt2 =
2
ωt2

e
v2

0
v2

r2 F
(
v0
vr2

)
, (10)

tt3 =
1
ωt3

©«tanh−1 ©«
v0√

v2
0 + v

2
r3

ª®®¬ +
v0

√
v2

0 + v
2
r3

v2
r3

ª®®¬ . (11)

Implicit differentiation of t allows us to determine r ′ =
dr
dr0

which is used in the density evolution expression

ρd(r, t) =
ρ0d(

r
r0

)d−1
r ′
. (12)

To obtain an expression for r ′, we need to take the deriva-
tive of the time with respect to r0 while holding t constant,
and then we solve for r ′. We present the results of this pro-
cess written in terms of time, the ratio r

rtd
, and the initial

conditions

r ′ =

{
−ydrtdωtdt ′td + ydrtdω

′
tdtftd + r

rtd
r ′td, t < −ttd,

ydrtdωtdt ′td + ydrtdω
′
tdtftd + r

rtd
r ′td, t ≥ −ttd,

(13)

for d = 2,3 for the cylindrical and spherical symmetric case,
respectively. Notice that all of the derivatives on the right
hand side can be written in terms of r0, v0, v′0, and ρ0d;
namely

r ′td =
rd−1
td

rd−1
0

(
1 − 2

v0
vrd

r0v
′
0

vrd
+ d

v2
0

v2
rd

ρ0d
ρ̄0d

)
, (14)

ω′d3 =
d
2
ωtd
r0

(
ρ0d
ρ̄0d
−

r0
rtd

r ′td

)
, (15)

t ′t2 = −
tt2
ωt2

ω′t2 +
2
ωt2

v0
vr2

e
v2

0
v2

r2
1
r0

( r0v
′
0

v0
−
ρ02
ρ̄02

)
, (16)

t ′t3 = −
tt3
ωt3

ω′t3 +
1
ωt3

v0
vr3

√√
1 +

v2
0

v2
r3

1
r0

(
1 + 2

r0v
′
0

v0
− 3

ρ03
ρ̄03

)
,

(17)

so Eq. (13) leads to an analytic form for ρd(r, t) through
Eq. (12). Note that the condition on the time corresponds
to the same ± condition seen with the velocity and the time-
position relation.

COMPARISON TO
CYLINDRICALLY-SYMMETRIC

SIMULATIONS
We first demonstrate the use of these equation with ini-

tially uniform distributions under cylindrical symmetry.
Within the initial distribution, we introduce a velocity term
that is linear in the initial position, specifically it has the
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form v0(r0) = C r0
R where C is a simulation dependent con-

stant and R is the initial radius of the uniform distribution.
This form for the velocity was chosen as it models the lin-
ear kick received by a distribution as it passes through a
typical focussing lens. For our demonstration, we chose
Σtot = 2 × 107 e

m and R = 1 mm, and this corresponds to a
vr2 ≈ 105 m

s
r0
R . We used the electrostatic Poisson solver in

PIC from warp [17] to simulate the evolution of the bunch.
Figure 1 shows the results for two values chosen for C, one
positive and one negative, both having magnitude equal to
the constant associated with vr2. Notice the excellent agree-
ment between theory and simulation in all cases; this is in
part due to both the initial velocity and vr2 having the same
functional form, r0

R , thus the distribution remains laminar.
We next demonstrate the use of these equations with

initially Gaussian distributions under cylindrical symme-
try. Again we introduce the same initial velocity relation,
v0(r0) = C r0

R , choosing Σtot = 4×107 e
m andσr = 1 m, which

corresponds to a vr2 ≈ 1.4 × 105 m
s

√
1 − e

−
r2
0

2σ2
r . Unlike the

uniform case, the functional form for the initial velocity
and the velocity scale differ. As we are interested in the
emergence of the shock, we focus our analysis on whether a
shock emerges, and if so, the period of time during which
the shock emerges. Figure 2 shows the evolution for the
three positive values of C. We see that for C = 104 m

s the
shock emerges around 22 ns instead of the 20 ns emergence
seen in the cold case [16]. For C = 5 × 104 m

s , the shock is
less noticeable and emerges in the vicinity of 50 ns. We do
not see the emergence of the shock when C = 105 m

s even at
times >100 ns.

Figure 3 shows the evolution for the three negative val-
ues of C. We see that for C = −104 m

s the shock emerges
around 18 ns instead of the 20 ns emergence seen in the
cold case, and for C = −5 × 104 m

s the shock seems to
emerge in the vicinity of 11 ns although the variation of
the simulated density from the theoretical expectation is
much larger for this simulation than for the previously in-
vestigated simulations. Interestingly, the model predicts
qualitatively different behavior than what is seen in simu-
lation for C = −105 m

s . Specifically, the mean-field fluid
model predicts that the distribution begins to expand much
earlier than what is seen in simulation. We believe this is
due to many Lagrangian particles violating the laminar as-
sumption leading to the incorrect assignment of force to a
large proportion of the Lagrangian particles. Specifically, as

v0 = C r0
R and vr2 ≈ 1.4 × 105 m

s

√
1 − e

−
r2
0

2σ2
r results in a the

Lagrangian particles mixing as they got to rt2.
To address this concern, we again simulate the

cylindrically-symmetric distribution but with v0 =

C

√
1 − e

−
r2
0

2σ2
r for C < 0. This velocity profile has the main

advantage of v0
vr2
= C

105 m
s
, which is independent of r0. This

results in rt2 = αr0 where α = e
− C2

1010 m2
s2 where α is indepen-

(a) v0 = 105 m
s
r0
R

(b) v0 = −105 m
s
r0
R

Figure 1: The evolution of uniformly distributed electrons
with density of 2 × 107 e

m in a R = 1 mm radius and where
r0 represent the radial position of the particle. The scale
of the initial velocity was chosen to be approximately the
same size as the scale of vr2. Solid lines are from the theory
presented in this paper and circles are from a single PIC
simulation for each figure. Notice that the mean-field fluid
model captures the evolution of the bunch in both cases.
Specifically, notice that the model correctly captures the
contraction and re-expansion of the uniform distribution in
the negative case.

dent of r0 and tt2 = 2α
ω02

e
− C2

1010 m2
s2 F

(
C

105 m
s

)
; that is, the turn

around points are simply scaled from the initial Gaussian,
although they still occur at different times as ω02 is still de-
pendent on r0. As can be seen in Fig. 4, this distribution does
appear to remain laminar through the focus as the theory is
now in agreement with simulation when v0 > vr2; however,
this comes at a cost of an early-emergence of the shock that
can be seen at 10 ns in Fig. 4b.
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(a) C = 104 m
s

(b) C = 5 × 104 m
s

(c) C = 105 m
s

Figure 2: The evolution of Gaussian distributed electrons
with density of 4 × 107 e

m whith σr = 1 mm and with initial
velocity of the particle given by v0 = C r0

R where r0 represent
the radial position of the particle and C > 0. Solid lines are
from the theory presented in this paper and circles are from a
single PIC simulation for each figure. Notice that the mean-
field fluid model captures the evolution of the bunch in all
cases. Also notice that large value of C appears to transform
the evolution of the bunch into a uniform-like structure and
that the bunch apparently loses the emergence of a shock.

COMPARISON TO
SPHERICALLY-SYMMETRIC

SIMULATIONS

We now demonstrate that the analysis for systems with
spherical symmetry is also accurate for a wide range of
initial conditions. As for the cylindrical case, we intro-
duce a velocity term that is linear in the initial position,
specifically it has the form v0(r0) = C r0

R where C is a sim-
ulation dependent constant and R is the initial radius of
the uniform distribution. For our demonstration, we chose
Qtot = 2 × 104e and R = 1 mm, and this again corresponds

(a) C = −104 m
s

(b) C = −5 × 104 m
s

(c) C = −105 m
s

Figure 3: The evolution of Gaussian distributed electrons
with density of 4 × 107 e

m whith σr = 1 mm and with initial
velocity of the particle given by v0 = C r0

R where r0 represent
the radial position of the particle and C < 0. Solid lines are
from the theory presented in this paper and circles are from a
single PIC simulation for each figure. While the model may
be an acceptable approximation for small negative values of
C, the mean-field fluid model gets progressively worse as
C becomes more negative and provides qualitatively incor-
rect predictions when C = −105. The reasons for this are
discussed in the text.

to a vr3 ≈ 105 m
s
r0
R . We used the electrostatic Poisson solver

in PIC from warp [17] to simulate the evolution of the bunch.
Figure 5 shows the results for the same two values chosen
for C, ±105 m

s , again approximately equal to the constant
associated with vr3. Notice the excellent agreement between
theory and simulation in all cases thus validating the use of
the spherically-symmetric formulation.

CONCLUSIONS
Here, we presented a mean-field fluid model for the evo-

lution of cylindrically and spherically symmetric charged
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(a) v0 = −105 m
s

√
1 − e

−
r2
0

2σ2
r

(b) v0 = −2 × 105 m
s

√
1 − e

−
r2
0

2σ2
r

Figure 4: The evolution of Gaussian distributed electrons
with density of 4×107 e

m in a R = 1 mm radius and where r0
represent the radial position of the particle. The functional
form of the initial velocity was chosen to be similar to vr2.
Solid lines are from the theory presented in this paper and
circles are from a single PIC simulation for each figure.
Notice that the mean-field fluid model captures the evolution
of the bunch in both cases despite the model failing for linear
initial velocity of the same scale as seen in Fig. 3. Notice
that for (b), a shock emerges betwen 8 and 10 ns.

bunches with arbitrary initial distribution and initial velocity
that can be written as a function of the radial coordinate.
We demonstrated that this model predicts the density evolu-
tion of the initially uniform bunch when the initial velocity
distribution is linear under both spherical and cylindrical
geometries. In the cylindrical geometry, we showed that the
shock that arises in the cold Gaussian distribution can be
suppressed by introducing a initial radially-outward velocity
distribution whose linear proportionality constant is of the
order or greater than

√
qΛtot
πmε0

. However, when an analogous
negative linear velocity distribution is introduced, the model
disagrees with simulations as the initial velocity results in
the violation of the laminar assumption. Nonetheless, by

(a) v0 = 105 m
s
r0
R

(b) v0 = −105 m
s
r0
R

Figure 5: The evolution of uniformly distributed electrons
with density of Qtot = 2 × 104e whith R = 1 mm and where
r0 represent the initial radial position of the particle. Solid
lines are from the theory presented in this paper and circles
are from a single PIC simulation for each figure. Like the
cylindrically symmetric case with this initial velocity dis-
tribution, notice that the theory is in agreement with the
simulations capturing the density of the bunch both as it
contracts as well as expands.

adjusting the functional form of the initially velocity dis-

tribution from r0
R to

√
1 − e

−
r2
0

2σ2
r , we demonstrated that the

model can predict the evolution of the initially Gaussian
distribution through the focus including the emergence of
a shock. This suggests that the laminar assumption for the
Gaussian distribution is not violated by this functional form
of the velocity distribution, at least for the duration of time
we simulated.

The velocity scales derived in this paper, vr2 and vr3,
present the means to qualitatively understand when the lam-
inar assumption can be made. For the uniform distribution,
vrd ∝

r0
R . Thus linear momentum kicks should result in the

evolution of the distribution remaining laminar even when
the kick is inward; however, if the inward kick has a func-
tional where the slope of the function is beyond linear, say
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v0 ∝
r2

0
R2 , outer Lagrangian particle trajectories will cross the

trajectories of inner Lagrangian particles and the laminar
assumption will be violated. Analogously for the Gaussian

distribution, vrd ∝

√
1 − e

−
r2
0

2σ2
r , so it is the slope of this

function that matters; that is, the linear kick, where vrd ∝
r0
R ,

has slope beyond

√
1 − e

−
r2
0

2σ2
r resulting in violation of the

laminar assumption. On the other hand, using

√
1 − e

−
r2
0

2σ2
r

as the functional form of the velocity distribution does retain
as seen in this work; thus such focussing follows the laminar
assumption to the point where the laminar assumption is
violated by the shock dynamics as we have discussed in out
previous work [16].

In other words, the model we have presented here provides
an accurate description of the density evolution of a beam
as it expands and focusses as long as the beam dynamics ex-
hibits laminar flow. The model also lends important insight
into what parameters drive the beam into non-laminar con-
ditions; specifically shortly after the emergence of a shock
and when the focussing kick has a functional form beyond
what is needed for the specific distribution. Of course, our
theoretical initial distributions are still technically cold as
v0 is exactly specified by r0; however, the initial spatial dis-
tribution in the simulations was sampled, and this process
does make the beam warm. Despite the beam being warm,
though, the model correctly predicts the focussing behav-
ior of both the initially uniform and Gaussian distributions
provided that the laminar criteria are met. Presumably there
if the temperature is high enough, the model will fail, and
an exploration of this condition is one of our current goals;
as is extending the analysis presented here to the relativis-
tic regime. The question of whether it is better to remain
within this laminar regime or to allow mixing is also worth
investigating as we now understand many of the conditions
to prevent Lagrangian particle mixing.
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