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Abstract
A relevant task in designing high-brilliance light sources

based on high-current linear accelerators (e.g. Energy Re-
covery Linacs (ERLs)) consists in systematic investigations
of ion dynamics in the vacuum chamber of such machines.
This is of high importance since the parasitic ions generated
by the electron beam turned out to be a current-limiting fac-
tor for many synchrotron radiation sources. In particular, the
planned high current operation at ERL facilities requires a
precise analysis and an accurate development of appropriate
measures for the suppression of ion-induced beam instabili-
ties. The longitudinal transport of ions through the whole
accelerator plays a key role for the establishment of the ion
concentration in the machine. Using the Particle-in-Cell
(PIC) method, we started redesigning our code MOEVE
PIC Tracking in order to allow for the fast estimation of
the effects of ions on the beam dynamics. For that, we ex-
changed the previously used Finite Difference (FD) method
for the solution of Poisson’s equation within the PIC solver
by a solver based on the Finite Element Method (FEM).
Employing higher order FEM, we expect to gain improved
convergence rates and thus lower computational times. We
chose the Open Source Framework FEniCS for our new
implementation.

INTRODUCTION
MOEVE was developed as a Particle-in-Cell (PIC) solver

at the University Rostock. It is an abbreviation and stands
for Multigrid for non-equidistant grids to solve Poisson’s
equation. The software was originally developed in C by
G. Pöplau et al. [1] and employs the Finite-Difference Tech-
nique (FD) to numerically discretize Poisson’s equation. The
discretized system of linear equations is solved iteratively
by a geometric multigrid method.

MOEVE has been used successfully to simulate the in-
teraction of electron beams with ionized residual gas [2, 3],
several investigations for the clearing of ions with clearing
electrodes and/or clearing gaps [4] and the simulation of
transverse wake functions [5]. MOEVE has also been im-
plemented in the tracking code GPT [6] and ASTRA [7].

Ion Clearing
Any residual gas in the vacuum chamber of an accelerator

can be ionized rapidly by the electron beam. The resulting
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ion distribution is denoted as ion cloud. For many syn-
chrotron radiation sources, these parasitic ions generated
by the electron beam are a current-limiting factor. They
often lead to beam instabilities, beam loss and they prevent
a continuous filling of electron bunches into the ring shape
machine.

In the existing synchrotron accelerators, mainly two strate-
gies are used to ensure a minimum stability in standard op-
erational regimes: clearing gaps and special electrodes for
removing and neutralizing the ions. In certain high-current
operating conditions ion effects are important, as they lead
to beam instabilities. In particular, the planned high-current
operation at ERL facilities requires a precise analysis and
an accurate development of appropriate measures for the
suppression of ion-induced beam instabilities [8].

The longitudinal transport of ions through the whole ac-
celerator plays a key role for the establishment of the ion
concentration in the machine. This aspect of the dynamics
has implications on both the beam dynamics and the ion
clearing efficiency but it has not been deeply studied up to
now. In particular, the extent to which the accelerating res-
onators contribute to the transport is largely unclear. Thus,
we are targeting a fast, systematic investigation of ion dy-
namics in the vacuum chamber of the machines involving
the impact on the beam and and its application to reduce
the effects related to ionized residual gas in high-current
electron machines. This study follows our previous inves-
tigations on ion trapping in high-current storage rings and
linear accelerators [2–4, 9, 10].

Prior Limitations of MOEVE Due to Finite Differ-
ences

Any PIC software consists of five different main modules.
These are

1. Charge weighting

2. Discretization of Poisson’s equation

3. Solver for Poisson’s equation

4. Field interpolation at particles position

5. Update scheme of the particle distribution

MOEVE’s current limitations, caused by the underlying
FD discretization, affect the discretization and solution of
Poisson’s equation. A comparably large number of degrees
of freedom (DOFs) are required for the accurate solution,
especially because the tensor product grid in the FD method
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does not approximate the geometry well. The current FD
implementation in MOEVE does not allow for the discretiza-
tion of arbitrary domains without strong reductions in accu-
racy [11], as it would be required for the tasks at hand.

The PIC method scales in its complexity with the number
of macro-particles and the required mesh cells of the dis-
cretization. While the number of macro-particles can not
be further reduced (since this would lead to an insufficient
accuracy) one can reduce the number of mesh cells by using
a different discretization technique (e.g. the Finite Element
Method (FEM)).

Using appropriate ansatz functions in FEM, e.g. Crouzeix-
Raviart elements as in [12], one could even improve this
convergence by at least one order1 compared to the FD dis-
cretization, thus allowing a reduction in the number of mesh
cells.

REPLACING THE FD SOLVER WITH
FEM FROM FENICS

When using a PIC method, we compute the accelerating
field of a charge density ρ(x) from the solution of Poisson’s
equation on the domain Ω:

−∆u(x) =
ρ(x)
ε

∀x ∈ Ω. (1)

Usually, in our applications εwill be the vacuum permittivity
ε0.

For a unique solution u(x) we have to impose boundary
conditions on ∂Ω:

u(x) = gD(x) ∀x ∈ ∂ΩD , (2)
∂ u(x)
∂ n(x)

= gN (x) ∀x ∈ ∂ΩN . (3)

The accelerating field ®E can then be computed as the
negative gradient ∇u(x) of the solution u(x).

For ease and speed-up of development and to attain a cer-
tain flexibility in the selection of function-spaces for ansatz
and test functions, we use FEniCS [13] as implemented in the
C++/Python library dolfin [14] for the automated solution of
the system of equations arising from the FEM formulation
of Eqs. (1), (2), and (3).

FEniCS allows to directly write down the weak formula-
tion of Poisson’s equation:∫

Ω

∇u(x) · ∇v(x) dx =
∫
Ω

ρ(x)
ε0

v(x) dx ∀v ∈ V (4)

as a pair of a bilinear form a(u, v):

a(u, v) =
∫
Ω

∇u(x) · ∇v(x) dx (5)

and a linear form L(v):

L(v) =
∫
Ω

ρ(x)
ε0

v(x) dx. (6)

1 This would lead to a quadratic (or better) convergence in the force with
FEM, compared to a linear convergence using FD.

To be able to do this one has to import the Python module
dolfin:

from dolfin import *

and to specify the discrete function spaces (depending on
the mesh used):

V = FunctionSpace(mesh,"CG",degree)
u = TrialFunction(V)
v = TestFunction(V)

One can directly write down the bilinear form a as:

a = dot(grad(u), grad(v))*dx(mesh)

We can now prepare and assemble the system matrix A
for the solver included in FEniCS:

template = PETScMatrix()
A = assemble(a,tensor=template)

The linear form L in the weak formulation of Eq. (1) as
given in Eq. (4) depends on the charge density arising from
the charges in the domain.

Starting from a constant ρ = 0 one can assemble the right
hand side linear form L and the corresponding vector rhs:

L = Constant(0.0)*v*dx(mesh)
rhs = assemble(L)

using the charge weighting implemented by the method
PointSource from dolfin to add macro-particles to the right
hand side:

macro_particles = []
for i in range(Number_of_Particles):

macro_particles.append((Particle[i],
charge[i]/eps0))

delta = PointSource(V, macro_particles)
delta.apply(rhs)

After defining and applying the boundary condition gD
on ∂ΩD

2

bc = DirichletBC(V, g_D,"on_boundary")
bc.apply(A)
bc.apply(rhs)

and setting up one of the solvers provided through dolfin
(here the conjugate gradient method):

solver = PETScKrylovSolver("cg","default")
solver.parameters["relative_tolerance"] =

residual
solver.set_operator(A)

one can solve for the unknown potential u(x):
2 For ease of exposition, we choose to only show the implementation using

a Dirichlet boundary condition gD on ∂Ω.
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u_x = Function(V)
solver.solve(u_x.vector(), rhs)

The electric field ®E can then be computed from the gradient
∇u(x) of the solution.

e_temp = -grad(u_x)

To be applicable as an interpolated field it has to be projected
onto an appropriate function space. Possibilities include

• the matching Raviart-Thomas finite element space

if V_field == "RT":
Efield = project(e_temp,

FunctionSpace(mesh,\
"RT", degree))

• the Brezzi-Douglas-Marini finite element space

elif V_field == "BDM":
Efield = project(e_temp,

FunctionSpace(mesh,\
"BDM", degree-1))

• a corresponding Discontinous-Galerkin vector function
space

elif V_field == "DG":
Efield = project(e_temp,

VectorFunctionSpace(mesh,\
"DG", degree-1))

• and the continuous Lagrange(Courant) vector function
space

else:
Efield = project(e_temp,

VectorFunctionSpace(mesh,\
"CG", degree-1))

The computed field can next be used to accelerate the
particles using the well-known Boris pusher [15].

FIRST RESULTS
In this section, we show first results for a simple model

problem as obtained from our FEniCS implementation for
MOEVE and compare with ASTRA [7]. The model problem
regards tracking of an electron bunch of Gaussian distribu-
tion in all directions for a short drift space without external
electromagnetic field and without ion cloud.

We have tracked an electron bunch with the new FEM
solver for a drift distance of 3.0 m without any external elec-
tromagnetic field or ion cloud. The initial bunch is generated
by ASTRA. The bunch profile is listed in Table 1. The rms
bunch size and the emittance growth are plotted in Figures 1

and 2, respectively. The results are compared with ASTRA
for the transverse directions. The emittance was computed
according [16].

Table 1: Bunch Profile for Tracking

Parameters of the electron bunch

Number of macro particles 5,000
Beam energy 15 MeV
Beam energy spread 1.49 keV
Beam charge -0.4 nC
Transverse emittance 1.0 π mm·mrad
Bunch length 0.88 mm
rms bunch radius 0.362 mm

Figure 1: Bunch size growth in transverse directions for
a drift distance of 3.0 m without external electromagnetic
fields as computed by MOEVE based on FEM and ASTRA,
respectively. Both curves agree very well. The relative error
between both results is shown as well in the same plot, each.

It can be seen that the results of MOEVE with the FEM-
based FEniCS implementation and ASTRA agree very well
both for the transverse bunch size growth and the emittance.
Regarding the relative error in the transverse bunch size
growth, it is observable that the relative error grows follow-
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Figure 2: Emittance growth in transverse directions for a
drift distance of 3.0 m without external electromagnetic
fields as computed by MOEVE based on FEM and ASTRA,
respectively. Both curves agree very well. The relative error
between both results is shown as well in the same plot, each.

ing a very similar functional behaviour as the transverse
bunch size growth itself. In that, the relative error after a
drift of 3.0 m without external electric field reaches about
0.0371% and 0.0353% for x and y, respectively. On the other
hand, the emittance stays constant over the drift. So does
the relative error between the results of MOEVE with the
FEM-based FEniCS implementation and ASTRA. Its value
is about 0.0295% and 0.0317% for x and y, respectively.
It should be noted that the new implementation in FEniCS
needs only 8.0×104 DoFs for a mesh of 0.3 m in z-direction
then moving along the drift distance of a 3.0 m long vacuum
chamber while ASTRA uses a grid of 643 ≈ 2.6×105 DoFs,
which covers the bunch area only. We used an Intel Xeon
workstation with 3.7 GHz CPU for both simulations. The
CPU time of our current FEniCS implementation is not yet
compatible to ASTRA since the procedures are not opti-
mized yet — e.g. adaptive time stepping and other efficiency
measures (see below) have not been implemented by now.

CONCLUSION AND FUTURE
PERSPECTIVE

In a pilot study, we developed an FEM-based model to
track electron bunches. A first study on a simple model prob-
lem, tracking through a drift space without external electric
field, showed very good agreement with results obtained by
ASTRA.

Next, we aim to improve this FEM-based numerical model
to study ion cloud dynamics using realistic geometries for the
accelerator components. To achieve a high computational
performance, we will employ MPI parallelization throughout
the code. Also, the charge weighting with PointSource as
well as the speed of interpolating the accelerating field at
the particles’ position can still be improved.

Additionally, we want to use the flexibility of the FEM
approach to implement adaptive hp-refinements, i.e. with
respect to elemnt size (h) and to the polynomial degree (p)
of the FEM approach. Elements that have macro-particles
allocated to them (e.g. that are close to the bunch or covering
it) should use a low-order approximation and be small [17],
while further away from high charge densities one can use
larger elements with a high order of approximation.

For validation, we will employ measurement results ob-
tained at the Electron Stretcher Accelerator (ELSA) in Bonn
[18]. Then, we will study the ion cloud dynamics to be
expected in the proposed ERL bERLinPro at Helmholtz-
Zentrum Berline (HZB) [10]. In general, this numerical
model can serve for ion cloud studies to estimate and reduce
the effects related to ionized residual gas in high-current
electron machines.
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