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Abstract
Gridless spectral methods for self-consistent symplec-

tic space charge modeling possess several advantages over
traditional momentum-conserving particle-in-cell methods,
including the absence of numerical grid heating and the
presence of an underlying multi-particle Hamiltonian. Nev-
ertheless, evidence of collisional particle noise remains. For
a class of such 1D and 2D algorithms, we provide analytical
models of the numerical field error, the optimal choice of
spectral modes, and the numerical emittance growth per time
step. We compare these results with the emittance growth
models of Struckmeier, Hoffman, Kesting, and others.

INTRODUCTION
Distinguishing between physical and numerical emittance

growth observed in long-term tracking of beams with space
charge is critical to understanding beam performance in
high-intensity proton rings. Numerical emittance growth
has been modeled as a collisional increase of the beam phase
space volume driven by random noise caused by the use of a
small number of macroparticles [1–4]. Recently, several au-
thors have developed methods for multiparticle tracking (in
plasmas or beams) using variational or explicitly symplectic
algorithms designed to preserve the geometric properties of
the self-consistent equations of motion [5–7]. In this paper,
we address the problem of numerical emittance growth gen-
erated by the multi-particle symplectic algorithm described
in [7]. Due to its relative simplicity, this algorithm can be
used as a test-bed for explicit probabilistic models of numer-
ical errors in the computed field and numerical emittance
growth.

SYMPLECTIC SPECTRAL ALGORITHM
We apply the algorithm described in Section III of [7] to

treat the Poisson equation in a general bounded domain Ω ⊂
Rd (d ≤ 2) with conducting boundary ∂Ω. The symplectic
map describing a numerical step in the path length coordinate
s is performed by applying second-order operator splitting
to the following multi-particle Hamiltonian:

H =
Np∑
j=1

Hext(®rj, ®pj, s) −
n

Np

1
2

Np∑
j=1

Np∑
k=1

Nl∑
l=1

1
λl

el(®rj)el(®rk).

Here Hext is the single-particle Hamiltonian in the external
applied fields, Np denotes the number of simulation parti-
cles, Nl denotes the number of computed modes, and n is a
space charge intensity parameter. The smooth functions el
∗ ChadMitchell@lbl.gov

form an orthonormal basis for the space of square-integrable
functions on the domain Ω, and satisfy

∇2el = λlel, el |∂Ω = 0, (λl < 0). (1)

It follows from H that each particle moves in response to the
smooth space charge force ®F = −∇U, where

U(®r) = −
n

Np

Nl∑
l=1

Np∑
j=1

1
λl

el(®rj)el(®r). (2)

The space charge potential U satisfies the Poisson equation
∇2U = −ρ and U |∂Ω = 0, where ρ is a particle-based
approximation to the beam density, given in terms of the
modes el (l = 1,2, . . .) by:

ρ =

Nl∑
l=1

ρlel, ρl =
n

Np

Np∑
j=1

el(®rj). (3)

The set of functions

®el =
1
√
−λl
∇el (l = 1,2, . . .) (4)

is orthonormal and can be extended to an orthonormal basis
for the space of square-integrable vector-valued functions
on Ω. The relationships between the corresponding modes
of ρ, U, and ®F are then given simply by:

Ul = ρl/λl, Fl = −
√
−λlUl . (5)

By appropriately grouping the sums appearing in the space
charge kick, the complexity of a single numerical step using
the Hamiltonian H scales as O(NpNl) [7].

PROBABILISTIC MODEL
Assume that particle coordinates (®rj, ®pj), j = 1, . . . ,Np

are sampled from the joint probability density PN given by:

PN (®r1, ®p1, . . . , ®rNp , ®pNp ) =

Np∏
j=1

P(®rj, ®pj), (6)

where P is the probability density on the single-particle
phase space describing an ideal (smooth) beam distribution.
If a denotes any function on the single-particle phase space,
we denote its beam-based average by

〈a〉 =
1

Np

Np∑
j=1

a(®rj, ®pj), ∆a = a − 〈a〉. (7)
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Likewise, if F,G denote random variables on the multi-
particle phase space, we denote their expected value and
covariance as

E[F] =
∫

FdPN , Cov[F,G] = E[FG] − E[F]E[G].

If a1 and a2 denote two functions on the single-particle phase
space, then 〈a1〉 and 〈a2〉 define random variables on the
multi-particle phase space, and it follows from the fact that
distinct particles are independent and identically distributed,
see Eq. (6), that ( j = 1,2)

E[〈aj〉] = E[aj], Cov[〈a1〉, 〈a2〉] =
1

Np
Cov[a1,a2].

A generalization of this result is provided in the Appendix.

FIELD ERROR AND OPTIMAL MODES
Field Error

The space charge potential of an ideal beam with density
ρexact is given by the exact solution of the Poisson equation:

∇2Uexact = −ρexact, Uexact |∂Ω = 0, (8)

where ρexact is the spatial projection of the phase space den-
sity nP appearing in Eq. (6). It follows that

ρlexact =

∫
Ω

ρexact(®r)el(®r)d®r = n E[el]. (9)

Let δρ = ρ − ρexact and δ ®F = ®F − ®Fexact, where ρ and
®F are the numerically computed quantities obtained using
Eqs. (2–5). It follows that for all modes with l,m ≤ Nl ,

E[δρl] = 0, Cov[δρl, δρm] =
n2

Np
Cov[el, em]. (10)

Using the relationships in Eq. (5) gives:

E[δFlδFm] =

{ 1
Np

n2
√
λlλm

Cov[el, em] (l,m ≤ Nl)

n2
√
λlλm

E[el]E[em] (l,m > Nl)
.

(11)
The mean-squared value of the computed field error at any
point ®r ∈ Ω is then given by:

E[|δ ®F(®r)|2] =
∞∑

l,m=1
E[δFlδFm]®el(®r) · ®em(®r). (12)

Define the L2 norm of the error in the computed field by:

| |δ ®F | |2 =
∫
Ω

|δ ®F(®r)|2d®r =
∞∑
l=1

(
δFl

)2
. (13)

Taking the expected value of Eq. (13) using Eq. (11) gives:

E[| |δ ®F | |2] = −
1

Np

Nl∑
l=1

n2

λl
Var[el] −

∞∑
l=Nl+1

n2

λl
E[el]2. (14)

The quantity Eq. (14) splits cleanly into contributions due to
particle noise (leftmost sum) and mode truncation (rightmost
sum).

Numerical 1D Example
Consider a 1D domain Ω = (0,a) containing a beam with

an ideal beam distribution P with parabolic spatial profile:

P(x, p) =
3
4h

{
1 −
(x − d)2

h2

}
δ(p), |x − d | ≤ h. (15)

Figure 1 illustrates the predicted rms error in the computed
field (black), together with the statistically computed rms
error obtained by averaging over 200 distinct random seeds
(red dashed). We see good agreement with the analytical
model Eqs. (11–12). The error is largest near the beam
core, with Gibbs ringing near the beam edges. Figure 2

Figure 1: Error in the computed field obtained using Np =

1000, Nl = 9, n = 1 corresponding to the density Eq. (15)
with a = 1, d = 1/3, and h = 1/4. (Upper) RMS error in
the coefficient of mode l. (Lower) RMS error in the field at
each position x.

illustrates the expected norm of the field error as a function
of the number of particles and the number of modes. For
fixed Nl = 9, the error decreases monotonically with Np,
approaching a nonzero limit. However, for fixed Np = 1000,
the error attains a minimum near Nl = 9. The problem of
choosing an optimal mode cutoff is addressed in the next
section.

Optimal Mode Set
For an ideal density ρexact, we can determine the optimal

set of modes S that must be computed to minimize the ex-
pected total error Eq. (14). Since λl < 0, every term in this
sum is nonnegative. Since every mode with index l must
contribute to either the leftmost sum or the rightmost sum in
Eq. (14), the quantity Eq. (14) is globally minimized when
we enforce the condition that l ∈ S if and only if:

E[(δFl)2]

(Fl
exact)

2
=

Var[δρl]
(ρlexact)

2
=

1
Np

Var[el]
E[el]2

≤ 1. (16)

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-WEPLG01

WEPLG01
336

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

D-1 Beam Dynamics Simulations



Figure 2: Norm of the error in the computed field corre-
sponding to the beam density Eq. (15) with a = 1, d = 1/3,
and h = 1/4. (Upper) Shown vs. number of particles for
fixed mode cutoff Nl = 9. (Lower) Shown vs. number of
modes for fixed Np = 1000. In both cases n = 1.

That is, l ∈ S if and only if the rms size of fluctuations in
the coefficient ρl resulting from particle noise is less than
or equal to the value of ρl for the ideal (smooth) density.
Because E[el]2 generally decays more rapidly that Var[el]
with increasing index l, the set S is generally finite, and it
follows from Eq. (16) that the optimal number of modes
increases monotonically with the number of simulation par-
ticles Np. Note that even in 1D, the optimal set S does
not in general take the form of a consecutive set of indices
S = {1,2,3, . . . ,Nl}.

ANALYSIS OF EMITTANCE GROWTH

Emittance Growth on a Single Step
Consider the case of a beam propagating with space charge

in a set of linear external focusing fields. The change in x-
emittance under a space charge kick (x, p) 7→ (x, p + τF) of
step size τ is given by:

ε2 − ε2
0 = 2τA + τ2B, (17)

where the terms A and B take the forms:

A = 〈∆x2〉〈∆p∆F〉 − 〈∆x∆p〉〈∆x∆F〉, (18)

B = 〈∆x2〉〈∆F2〉 − 〈∆x∆F〉2. (19)

Note that Eq. (18) may have variable sign, while Eq. (19) is
always nonnegative. Both A and B are invariant under the
transformation:

x → x + c, p→ p + ax + b, F → F + gx + h (20)

for any constants a, b, c, g, and h. This allows us to remove
all linear correlations with x, writing

x = E[x] + xu, (21)

p = E[p] +
Cov[x, p]
Var[x]

(x − E[x]) + pu, (22)

e′l = E[e′l] +
Cov[x, e′

l
]

Var[x]
(x − E[x]) + e′l,u . (23)

Here e′
l
= ∂el/∂x. Replacing x, p, and e′

l
with xu , pu , and

e′
l,u

if necessary, we may therefore assume that E[x] = 0,
E[p] = 0, E[e′

l
] = 0, Cov[x, p] = 0, and Cov[x, e′

l
] = 0. Ap-

plying our probabilistic model to the random variables A and
B using the results of the Appendix gives a decomposition
into modes of the form:

E[A] =
Nl∑
l=1

n
λl

Al, E[B] =
Nl∑

l,m=1

n2

λlλm
Blm, (24)

Var[A] =
Nl∑

l,m=1

n2

λlλm
Alm, (25)

Var[B] =
Nl∑

l,m,l′,m′=1

n4

λlλmλl′λm′
Blml′m′ . (26)

In general, the mode coefficients are complicated and must
be evaluated using computer algebra. However, in the
smooth beam limit Np →∞, we have:

lim
Np→∞

Al = Var[x]Cov[p, e′l]E[el], (27)

lim
Np→∞

Blm = Var[x]Cov[e′l, e
′
m]E[el]E[em]. (28)

Note also that Var[A] and Var[B] are each O(1/Np). If P is
chosen such that x and p are independent (aside from pos-
sible linear correlation), we also have the following results,
accurate through first order in 1/Np:

E[A] = 0, Var[A] =
1

Np
Var[x]Var[p]E[B]. (29)

Finally, we may evaluate the coefficients appearing in E[B]
through first order in 1/Np to give:

Blm = lim
Np→∞

Blm +
1

2Np
(T lm + Tml), (30)

where

T lm = Var[x]Cov[e′l, e
′
m]Cov[el, em]

− 3 Var[x]Cov[e′l, e
′
m]E[el]E[em]

+ 2 Cov[x2, el]Cov[e′l, e
′
m]E[em]

+ 2 Var[x]Cov[e′le
′
m, el]E[em]. (31)

These results can be compared to the model of emittance
growth on a single step described in Section IV of [4]. That
model is equivalent to treating the kick F as a random field
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with E[F(x)] = 0 and spatially-varying Var[F(x)], and ne-
glecting contributions to the emittance due to statistical fluc-
tuations in the beam moments and nonlinear correlations
between F and x. Applying this model to Eq. (18–19) gives:

E[A] = 0, E[B] = Var[x]E[Var[F(x)]]]. (32)

Using the model of numerical field error given in the previ-
ous section Eq. (12), we find (in the 1D case) that:

Var[F(x)] =
1

Np

Nl∑
l,m=1

n2

λlλm
Cov[el, em]e′l(x)e

′
m(x). (33)

It follows from Eq. (33) that

E[B] =
1

Np

Nl∑
l,m=1

n2

λlλm
Var[x]Cov[el, em]Cov[e′l, e

′
m].

(34)
Comparing with Eq. (31), we see that this approximation is
equivalent to assuming that the emittance growth vanishes
in the limit Np →∞ and neglecting all but the first term of
Eq. (31).

Numerical 1D Example
Consider a 1D domain Ω = (0,a), using an ideal beam

distribution P of the form:

P(x, p) =
1

2πσpσx
exp

(
−

p2

2σ2
p

)
exp

(
−
(x − a/2)2

2σ2
x

)
.

(35)
A statistical test was performed as follows. We randomly

generated a beam consisting of Np particles (x, p) by sam-
pling from the density Eq. (35). The space charge force
F(x) was computed at all particle locations using the sym-
plectic spectral algorithm with Nl = 15, n = 1. Terms A
and B of Eqs. (18–19) were computed, and this procedure
was repeated for 1M distinct random seeds. Fig. 3 provides
histograms of the results, illustrating the probability density
of the random variables A and B. In each figure, the quantity
on the horizontal axis is shown after subtracting the expected
value obtained in the smooth beam limit Np → ∞, given
by using Eqs. (27–28) in Eq. (24). Here limNp→∞ E[A] = 0
and limNp→∞ E[B] = 3.75 × 10−3. The results become
more sharply peaked around the predicted smooth limiting
value as Np →∞, with a standard deviation that scales as
O(1/

√
Np), as predicted. Table 1 provides the mean and

standard deviation of A and B. Comparing the computed
mean µ and standard deviation σ of A with the prediction
Eq. (29), we see that µ deviates from E[A] by <10−6, and σ
is in agreement with Var[A]1/2.

Emittance Growth in a FODO Channel
We modeled a 1 GeV proton beam with 100 A current in a

FODO lattice of period 1 m, using a 2D rectangular domain
of size 6.5×6.5 mm. The lattice zero current phase advance
per period is 87 degrees, and the depressed phase advance
is 74 degrees. Figure 4 shows the emittance evolution of

Figure 3: Probability density for the emittance contributions
A and B of Eqs. (18–19) for the case Nl = 15, n = 1,
obtained by sampling beams with varying Np using 1M
random seeds. (Upper) Term A. (Lower) Term B. The
values of A and B are statistically uncorrelated.

Table 1: Emittance Contributions on a Single Step

term A term B

Np µ σ µ σ

103 −9.9 × 10−7 1.9 × 10−3 2.2 × 10−6 5.5 × 10−4

104 −3.3 × 10−7 6.1 × 10−4 4.1 × 10−7 1.8 × 10−4

105 +2.9 × 10−7 1.9 × 10−4 1.0 × 10−7 5.6 × 10−5

an initially matched KV beam with εx,n = εy,n = 1 µm
over 100,000 periods using 15 horizontal and 15 vertical
modes (so Nl = 15 × 15). Despite the small number of
modes and the small number of particles, the emittance is
preserved within 0.4%. The emittance evolution is domi-
nated by period-period fluctuations, and the rms amplitude
of these fluctuations scales as N−βp , with a best fit exponent
of β = 0.57, approximately consistent with O(1/

√
Np).

By contrast, Fig. 5 shows the emittance evolution of an
initially matched Gaussian beam with εx,n = εy,n = 1 µm
using 32× 32 modes, illustrating linear emittance growth. A
least-squares fit to determine the emittance growth rate was
performed for each value of Np , and the resulting emittance
growth rate data scales as N−αp with α = 0.996, consistent
with O(1/Np). The rms amplitude of residual fluctuations
after removing the linear fit indicates that these fluctuations
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scale as N−βp , with β = 0.58, similar to the KV case and
nearly consistent with O(1/

√
Np).

Figure 4: Evolution of the 4D emittance√εxεy for a matched
KV beam propagating in a FODO lattice using 15 × 15
spectral modes for several values of Np .

Figure 5: Evolution of the 4D emittance√εxεy for an initially
Gaussian beam propagating in the same FODO lattice using
32 × 32 spectral modes for several values of Np .

Letting εn denote the emittance after the nth numerical
step, we have the expected emittance change at step n:

E[ε2
n − ε

2
n−1] = 2τ E[A] + τ2 E[B], (36)

where A and B denote the contributions Eqs. (18–19) at step
n. Dividing by τ, assuming that the ideal (smooth) beam
distribution evolves slowly from step to step (a questionable
assumption), and assuming a relative emittance growth <<
1, we obtain an approximate expression for the emittance
growth rate given by (compare the result in [4]):

E
[

dε
dτ

]
≈

1
2ε0

τ E[B]. (37)

Similarly, noting that:

Var[ε2
n − ε

2
n−1] = 4τ2 Var[A] + 4τ3 Cov[A,B] + τ4 Var[B],

keeping to leading order in the stepsize τ, and making the
same assumptions as above gives an approximate expression
for the rms fluctuations of the emittance from step to step:

σ∆ε ≈
τ

ε0
Var[A]1/2. (38)

Using Eqs. (29) and (34), we see that the two quantities
Eqs. (37) and (38) are expected to scale as O(1/Np) and
O(1/

√
Np), respectively, as observed.

The approximate scaling analysis above effectively ne-
glects horizontal-vertical coupling. A probabilistic treat-
ment of the dynamical emittance growth driven by particle
noise in the presence of space charge was previously pro-
posed using a moment analysis of the Vlasov-Fokker-Planck
equation [1], [8], where the role of collisional heat exchange
between the degrees of freedom is emphasized. A connec-
tion could be made by relating the friction and diffusion
coefficients in this model to the explicit model of field and
single-step emittance growth described here.

CONCLUSION

We developed probabilistic models of the computed field
error and numerical emittance growth on a single step for a
fully symplectic spectral space charge tracking algorithm [7].
The models described here are independent of the detailed
geometry of the domain, which appears indirectly through
the set of modes el and eigenvalues λl . The model of the
computed field error, including both particle noise and errors
due to the use of a finite mode cutoff, is relatively simple,
and can be used to select an optimal set of computed modes
that minimizes the expected norm of the computed field
error for a given particle number.

A complete probabilistic model of dynamical emittance
growth is difficult, but insight can be drawn from a model of
emittance growth on a single numerical step. This emit-
tance growth is driven by the two terms Eqs. (18) and
(19). Term A in general has negligible expected value, but
Var[A] ∼ O(1/Np), and this variance drives fluctuations in
the emittance from step to step, which scale approximately
as O(1/

√
Np). Term B is always nonnegative. Its expected

value contains a term that is independent of Np , which drives
emittance growth in the smooth-beam limit, and a term due
to particle noise, that drives additional emittance growth
scaling as ∼ O(1/Np). Statistical moments of these terms
can be decomposed into contributions from various modes,
and evaluated for a given beam distribution function. We
observe a scaling of emittance growth rates and emittance
fluctuations consistent with this model for a beam propagat-
ing in a FODO channel.

Additional work is underway to investigate the validity
of this probabilistic model by evaluating the role played by
statistical correlations between successive numerical steps.
Finally, while it appears that symplecticity alone is insuffi-
cient to eliminate the diffusive effects of numerical noise, it
is suspected that these effects can be further suppressed by
using higher-order particle shapes (such as those described
in [6]), which serve to additionally filter high-frequency com-
ponents of the computed space charge fields. A discussion
of this approach and additional strategies for noise filtering
in space charge tracking is provided in [9].
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APPENDIX
Let aj ( j = 1, . . . ,N) and bk (k = 1, . . . ,M) denote func-

tions defined on the single-particle phase space. Under the
probability model Eq. (6), we may evaluate the expected
value and variance of any polynomial in the beam averages
〈aj〉, 〈bk〉. This includes, for example, Eqs. (18–19). It
follows from the fact that distinct particles are independent
and identically distributed that:

E


N∏
j=1
〈aj〉

 =
N∏
j=1

E[aj]+ (39)

1
Np

N∑
j ,k=1
j<k

Cov[aj,ak]
N∏
n,j

n,k

E[an] +O

(
1

N2
p

)
,

and also:

Cov


N∏
j=1
〈aj〉,

M∏
k=1
〈bk〉

 = (40)

1
Np

N∑
j=1

M∑
k=1

N∏
r,j

E[ar ]
M∏
s,k

E[bs]Cov[aj, bk] +O

(
1

N2
p

)
.

Throughout this paper, we evaluate all quantities to first order
in 1/Np . We may use the linearity of E[·] and the bilinearity
of Cov[·, ·] to extend this result to polynomials in 〈aj〉, 〈bk〉.
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