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Abstract

Electromagnetic Particle-In-Cell codes have been used
to simulate both radio-frequency accelerators and plasma-
based accelerators. In this context, the Particle-In-Cell al-
gorithm often uses the finite-difference method in order to
solve Maxwell’s equations. However, while this method is
simple to implement and scales well to multiple processors,
it is liable to a number of numerical artifacts that can be
particularly serious for simulations of accelerators.

An alternative to the finite-difference method is the use of
spectral solvers, which are typically less prone to numerical
artifacts. The present article reviews recent progress in the
use of spectral solvers for simulations of plasma-based ac-
celerators. This includes techniques to scale those solvers to
large number of processors, extensions to cylindrical geom-
etry, and adaptations to specific problems such as boosted-
frame simulations.

INTRODUCTION

Particle-In-Cell (PIC) codes [1, 2] are widely used in
various fields of physics, and in particular in accelerator
physics. For many accelerator-related problems, electro-
static PIC codes are usually sufficient to capture the physics
at stake. However, some applications do require full electro-
magnetic PIC codes. This includes for instance accelerators
based on laser-plasma interactions [3–7], where e.g. the self-
consistent evolution of the laser driver needs to be captured
by the PIC algorithm.

For these applications that require an electromagnetic
Particle-In-Cell code, the Finite-Difference-Time-Domain
(FDTD) method (e.g. [8]) has been the most commonly-used
approach for solving Maxwell’s equations. However, due to
some of the limitations of the FDTD method, other meth-
ods are increasingly being used—and this includes spectral
solvers.

This paper focuses on spectral solvers for PIC codes and
their advantages—with an emphasis on their application to
laser-plasma interactions. Note that, for the sake of con-
ciseness, the present paper is restricted to Particle-In-Cell
codes that do solve Maxwell’s equations on a grid (in which
case spectral solvers are sometimes referred to as pseudo-
spectral), and does not discuss the set of gridless spectral
electromagnetic algorithms that have been recently devel-
oped, in the context of accelerator simulations (e.g. [9–11]).

∗ rlehe@lbl.gov

SPECTRAL SOLVERS, AND DIFFERENCE
WITH FDTD SOLVERS

In order to summarize the principle of the spectral solvers,
let us contrast them with the FDTD algorithm. In the stan-
dard Yee FDTD algorithm [8], Maxwell’s equations

∂B

∂t
= −∇ × E, (1)

1
c2
∂E

∂t
= ∇ × B − µ0 j (2)

are discretized in two ways:

• Spatial derivatives are approximated by a finite differ-
ence between neighboring points on a staggered grid.
For instance,

∂xEx |
n
i, j ,k =

Ex |
n
i+1/2, j ,k − Ex |

n
i−1/2, j ,k

∆x
.

• Time derivatives are approximated by a finite difference
between consecutive time steps. For instance,

∂tEx |
n+1/2
i+1/2, j ,k =

Ex |
n+1
i+1/2, j ,k − Ex |

n
i+1/2, j ,k

∆t
.

where we adopted standard notations whereby superscripts
represent the index of the time step whereas subscripts repre-
sent positions on a staggered grid. As a consequence of the
above simple space and time discretizations, the discretized
Maxwell equations can easily be rewritten as a set of explicit
update equations for the E and B fields.

While the above approximations allow fast execution and
efficient parallelization, they also introduce numerical arti-
facts. One of these numerical artifacts is spurious numerical
dispersion, i.e. the fact that the phase velocity of simulated
electromagnetic waves (in vacuum) differs from the speed of
light c, and depends on their wavelength and propagation an-
gle. Spurious numerical dispersion can have a very serious
impact in realistic simulations, and can lead to unphysical
results. For instance, in the context of laser-plasma interac-
tions, numerical dispersion can lead to spurious early dephas-
ing in laser-driven accelerator [12], unphysical growth of
emittance [13], and erroneous angle-frequency correlations
in high-harmonics generation [14].

One of the main motivation for spectral solvers is to miti-
gate numerical dispersion. This is done by overcoming the
approximations of FDTD schemes in two ways:

• Spatial derivatives are approximated by a high-order
expression involving many grid points. These deriva-
tives are typically evaluated in Fourier space for effi-
ciency. Algorithms that use this feature but retain a
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finite-difference approximation in time are typically re-
ferred to as Pseudo-Spectral Time Domain algorithms
(PSTD) [15, 16].

• Instead of using a finite-difference approximation of the
time derivatives, Maxwell’s equation can be integrated
analytically over one time step, in spectral space. Algo-
rithms that use this additional feature are referred to as
Pseudo-Spectral Analytical Time Domain algorithms
(PSATD) [17, 18].

The above two points are explained in more details in the
next paragraphs.

The high-order approximation of the spatial derivative in
PSTD and PSATD schemes are of the form

∂xEx |
n
i, j ,k =

p/2−1∑̀
=0

c`,p
Ex |

n
i+1/2+`, j ,k − Ex |

n
i−1/2−`, j ,k

∆x
,

where p is the order of the approximation and c`,p are coef-
ficients that are given in [19] (For p = 2, this reduces to the
standard finite-difference expression of the Yee solver). It is
common to use large values for p in practice (e.g. p = 32
or p = 64). Since these large values entail a significant
computational cost, these derivatives are often more effi-
ciently evaluated in Fourier space, by using the convolution
theorem, i.e.

F [∂xEx] = i[kx]p Êx,

[kx]p =

p/2−1∑̀
=0

c`,p
eikx (`+1/2)∆x − e−ikx (`+1/2)∆x

i∆x
,

where F represents the Fourier transform and Êx ≡ F [Ex].
Note that, when p goes to infinity, [kx]p goes to kx , and thus
the spatial derivatives are evaluated with full spectral accu-
racy. However, the case p = ∞ is rarely used in practice due
to parallelization issues (as explained in the next section).

Using high-order spatial derivatives (i.e. high p) makes
the numerical dispersion relation less anisotropic. How-
ever, it does not mitigate spurious numerical dispersion alto-
gether, unless the treatment of the time derivative is made
more accurate too. One way to achieve this is to retain
a finite-difference approximation in time, but use a small
time step (much smaller than the Courant-Friedrichs-Lewy
limit)—but this comes at a high computational cost. An-
other possible approach is to integrate Maxwell’s equations
analytically in spectral space.

When evaluated in spectral space, the spatially-discretized
Maxwell equations indeed reduce to a simple set of ordinary
differential equations with constant coefficients:

∂B̂(k, t)
∂t

= −i[k]p × Ê(k, t) (3)

1
c2
∂Ê(k, t)
∂t

= i[k]p × B̂(k, t) − µ0Ĵ(k, t). (4)

As such, these equations can be integrated analytically from
t = n∆t to t = (n + 1)∆t, under the assumption that Ĵ(k, t)

is constant over one time step [17, 18]. By taking Ên and
B̂n as initial conditions, this analytical integration can yield
Ên+1 and B̂n+1, i.e. the updated fields at the next time step:

Ên+1
= CÊn

+ iS
[k]p

[k]p
× B̂n

−
S
[k]p

Ĵn+1/2

+(1 − C)
[k]p([k]p · Ê

n
)

[k]2p
(5)

+
[k]p([k]p · Ĵ

n+1/2
)

[k]2p

(
S
[k]p

− ∆t
)
,

B̂n+1
= CB̂n

− iS
[k]p × Ê

n

[kp]

+i
1 − C
[k]2p

[k]p × Ĵ
n+1/2

, (6)

where C = cos([k]pc∆t), S = sin([k]pc∆t), and [k]p =√
[k]2p .
In summary, the update of the E and B fields (from time

step n to time step n + 1) in the PSATD scheme consists of
three steps:

1. Apply a forward Fourier transform, in order to obtain
the fields in spectral space at time step n (Ên, B̂n) from
the fields in real space (En, Bn).

2. Apply Eqs. (5)-(6) to obtain the fields in spectral space
at time step n + 1 (Ên+1, B̂n+1)

3. Apply an inverse Fourier transform, in order to obtain
the fields in real space at time step n + 1 (En+1, Bn+1)
from the fields in spectral space.

Using this scheme and a high spatial order p, spurious
numerical dispersion can generally be mitigated to negligible
levels.

RECENT DEVELOPMENTS
Parallelization

One of the major issues with spectral solvers has been
their scaling across many computing nodes. In principle,
the PSTD and PSATD schemes require a global Fourier
transform across the whole computational domain. When
using a standard domain decomposition technique for paral-
lelization, this Fourier transform can be implemented by a
global, distributed Fast Fourier Transform (FFT). However,
distributed FFTs do not scale well to many compute nodes,
due to the large amount of inter-node communications that
they involve.

In the case of Maxwell’s equations, one alternative to the
global, distributed FFT is to use a local FFT in each sub-
domain, along with guard cells [18]. In principle, using a
local FFT instead of a global one introduces errors. But,
because the Maxwell update Eqns. (1)–(2) are a hyperbolic
set of equations, the errors remains confined to the guard
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cells (provided that there are enough of them) [18,20]. These
errors can thus be eliminated by copying the data from the
valid regions of neighboring sub-domains into the guard cells
of the local sub-domain, immediately after the Maxwell field
update.

The minimal number of guard cells that eliminates these
errors can be calculated for any given order p [20]. This
number increases with p; and for typical orders (e.g. p = 32,
p = 64), tens of guard cells are required. While this number
is large in comparison with FDTD (only one or two guard
cells required), its impact on performance can be mitigated
by using relatively large sub-domains, with several cores
working on the same sub-domain through shared-memory
programming paradigms.

By using local FFTs and guard cell exchanges between
neighboring sub-domains, a much more favorable scaling
can be obtained than with global, distributed FFTs. For
instance, it was possible to reach nearly-linear strong scaling
on a few hundreds of thousands of cores in [21], whereas
global FFTs become prohibitively expensive at this scale.

Cylindrical Geometry
For problems with nearly-cylindrical symmetry, a full

3D Cartesian mesh is not always optimal. In fact, by using
an azimuthal expansion and a few 2D r-z grids (one per az-
imuthal mode), computational costs can be very substantially
reduced [22].

PIC codes using the azimuthal expansion were first im-
plemented using the FDTD approach [22–24]. A hybrid
PSTD-type algorithm was later implemented by retaining
a finite-difference approach in the radial direction while us-
ing a spectral approach for the longitudinal derivatives [25].
Finally, a fully spectral (in r and z) PSATD algorithm was
derived and implemented [26].

In cylindrical geometry, the PSATD algorithm relies on
a Fourier transform along the z direction, and a Hankel
transform along the r direction. It turns out that the Fourier-
Hankel representation of Maxwell’s equations has a sim-
ilar structure as the 3D Cartesian Fourier representation
(Eqs. (3)–(4)). Therefore, the Fourier-Hankel representation
of Maxwell’s equations can also be integrated analytically
over one time step, and, as a result, also mitigates spurious
numerical dispersion [26].

SOME ADDITIONAL ADVANTAGES OF
SPECTRAL SOLVERS

While, in the previous sections, the spectral solvers were
mainly motivated by the mitigation of the spurious numerical
dispersion, they do have additional advantages. Two of these
advantages are presented in the next subsections.

Accurate Evaluation of the Lorentz Force
A common shortcoming of FDTD PIC codes is the inac-

curacy of the calculated Lorentz force in cases where the
E and v × B cancel very closely. This situation arises for
instance when a relativistic bunch of electrons co-propagates

with a laser: in this case, the term E + v × B is on the order
of E/γ2, where γ is the Lorentz factor of the bunch.

This tight cancelation of the E and v×B terms is difficult
to capture in an FDTD PIC code. This is because the fields
E and B are staggered in time and space, and are therefore
not evaluated exactly in the same way, when interpolated
onto the macroparticles. (For instance, B is typically aver-
aged in time, before being interpolated to the macroparticles,
whereas E is not.) These slight differences in the evaluation
of E and B introduce small numerical errors that can dom-
inate the term E + v × B in the case where the two terms
cancel closely [27].

On the other hand, in the PSATD algorithm, the fields
E and B are both defined at the same time (and it is also
possible to define them on the same points in space). As
a result, the fields are evaluated in a similar way, and can
cancel appropriately. This was confirmed for instance in test
simulations of an electron co-propagating with a laser [26].

Mitigation of the Numerical Cherenkov Instability
Some types of PIC simulations can become numerically

much cheaper when using a different reference frame than
that of the laboratory [28]. This is the case for instance in
simulations of laser-wakefield acceleration, where the dis-
crepancy between the laser wavelength and the length of the
accelerating plasma stage can be greatly reduced in an ap-
propriate Lorentz frame (commonly known as the “boosted
frame”) [28]. Yet, when using the boosted frame, the bulk
of the plasma stage moves relativistically with respect to
the grid. In PIC codes, this gives rise to a numerical in-
stability, known as the Numerical Cherenkov Instability
(NCI) [29, 30].

Various methods have been used to mitigate the NCI, so
as to carry out robust boosted-frame simulations. Some
of these methods can be applied to the FDTD or PSTD
approach [31–38]. However, the PSATD approach is the
only one that is compatible with a particularly robust and
elegant mitigation technique: the Galilean technique [39,40].

In the Galilean technique, Maxwell’s equations are solved
in a Galilean system of coordinates that moves with the bulk
of the plasma. It turns out that solving Maxwell’s equations
with the PSATD scheme in these coordinates suppresses the
NCI—without the need for any further numerical correction
[39, 40]. Additionaly, this method naturally generalizes to
cylindrical coordinates, when using the above mentioned
Fourier-Hankel representation.

CONCLUSION
Simulations of accelerators can be numerically challeng-

ing when using the electromagnetic PIC algorithm. Spectral
solvers can alleviate some of these numerical challenges, by
using a more accurate discretization of Maxwell’s equations.
In addition, recent developments allow to efficiently paral-
lelize these solvers across many nodes, and to port them to
cylindrical geometry.
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Yet, it is important to keep in mind that spectral solvers
are one possible solution among others, for many of the
above challenges. For instance, spurious numerical disper-
sion can be mitigated to some degree by non-standard finite-
difference methods (e.g. [13, 41–43]). Similarly, the inaccu-
racy in the Lorentz force can be partially mitigated by using
higher-order interpolation in time [27]
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