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Abstract
Obtaining accurate linear and nonlinear accelerator mod-

els is critical for routine accelerator operation. Here we con-

sider a method based on BPM data and generating functions

that provides fitted accelerator model. Using measurements

from at least three BPMs and generating functions between

them allows obtaining momenta at BPMs as the functions

of model parameters and comparing them. Thus, lattice

parameters can be fitted. Theoretical results are presented

and the method is applied to the model examples.

INTRODUCTION

It is important to know accurate linear and nonlinear ac-

celerator models for routine accelerator operation. Thereby,

one needs to obtain fitted accelerator model. To perform

this task model-dependent accelerator lattice fit method was

developed. The method is based on transverse beam position

measurements from BPMs and generating function compu-

tation. Transverse beam position are available from BPM

measurements, but no information about beam momenta

can be obtained this way. BPM data can be obtained either

from turn-by-turn measurements or by scanning orbit with

correctors. Knowing accelerator model between two con-

secutive BPMs and its dependence on parameters one can

derive expressions for momentum values in monitors, e.g.

by using generating functions. Generating function which

depends on model parameters, can be computed with COSY

INFINITY [1]. Parameters are defined as small fractional

errors of the strengths of magnet elements, i.e. quadrupole,

sextupole magnetic field errors and so on. BPM alignment

errors can also be considered as parameters.

Then, for two successive sections confined within three

BPMs one can compare any functions of phase space vari-

ables or transverse momenta, in particular. Such comparison

can be used for magnetic error localization. If the model

contains no errors, then beam momenta in the adjacent BPM

calculated by means of the first section and the second one

coincide. If there is an error, computed momenta are differ-

ent and either or both sections have errors in them. Thus,

carrying out momentum comparison for the whole accel-

erator structure one can reveal the regions with significant

errors. In case momenta do not match well one can fit model

parameters and obtain fitted accelerator model in BPMs. In

regions with small errors one can assume that the model

describes these regions accurately.
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THEORETICAL FRAMEWORK
Transfer Map
Consider accelerator section confined within two BPMs.

At this section accelerator model can be described with trans-

fer map. Transfer map allows transferring beam positions q
and momenta p between BPMs:

(
qf

pf

)
=

( Q
P

) (
qi
pi

)

where Q and P denote the position and momentum parts of

section transfer map.

Transfer map depends on parameters such as small frac-

tional errors of the strengths of magnet elements. And can

be represented as Taylor series expansion with respect to

phase space variables with coefficients depending on model

parameters:

qf = αqqi + βqpi + γqqi2 + δqqipi + εqpi2 + ,

pf = αpqi + βppi + γpqi2 + δpq pi i + εppi2 + .

where α, β, γ, ... – coefficients of transfer map.

COSY INFINITY allows us to find these coefficients as

functions of errors.

Generating Function
Let Iq and Ip denote the position and momentum parts

of the identity map. Then,

(
qf

qi

)
=

( Q
Iq

) (
qi
pi

)

If the map (Q,Iq)t is invertible, we have the following
relationship [2]:

(
pf

pi

)
=

( P
Ip

)
◦

( Q
Iq

)−1 (
qf

qi

)
(1)

which expresses initial and final momenta in terms of initial

and final positions.

Right hand side of the eq. (1) represents differential of

F1-type generating function. Every symplectic map can be
represented by at least one of four generating functions in

mixed variables. F1(qi, qf ) generating function of the sym-
plectic map allows us to obtain beam momenta by knowing

its positions. Generating function satisfies the following

conditions: (
pi, pf

)
=

(
∇qi F1, −∇q f F1

)
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Figure 1: FODO structure.

Method Description
Consider a sequence of magnetic elements consisting of

two periodic cells confined within three BPMs as shown

in Fig. 1. Using measurements from at least three BPMs

and generating functions between them allows obtaining

momenta at BPMs as the functions of model parameters and

thus comparing momenta computed for different sections.

By minimizing L2-norm of | |pn− − pn+ | | one can fit errors
and thus, fitted lattice parameters such as transfer map coef-

ficients, beta-functions, tunes and other can be obtained as

well.

MODEL EXAMPLES
Error Localization
As stated above, the method can be used for error local-

ization. We consider simple accelerator structure consisting

of twelve FODO cells with four sextupoles in each cell and

BPMs are placed between the cells (Fig. 2).
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Figure 2: Beta-functions and profile for a single periodic

cell.

The beam momenta in BPMs can be determined from

transverse beam position in three neighboring monitors.

Thus, for each BPM we can compute transverse momenta

p−n (qn−1, qn) and p+n (qn, qn+1). If there are no errors in the
region placed between three monitors, then correlation be-

tween the momenta in the adjacent BPM should be equal to

1.

As an example, we set errors in the 5th, 9-11th cells.

The results of momentum comparison is shown in Fig. 3,

where blue dots denote momentum comparison based on two

neighboring cells and momentum comparison with tracking

is denoted by red dots. As we can see, the regions with errors

have been localized. We use

Δn = 1 − 1/2(corr (p−x,n, p+x,n) + corr (p−y,n, p+y,n))

as a comparison criterion with n being BPM number. Δn is

equal to zero when two neighbouring cells have no errors

and not equal to zero in case when either or both of them

have errors. Δn is larger for larger errors. Hence, comparing

momenta for all BPMs one can distinguish lattice regions

with significant errors.
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Figure 3: Error localization by comparison of momenta

between the cells (blue) and momenta of each cell with ones

from tracking (red).

Model Parameter Fitting
We use the above lattice for model parameter fitting. Here

model parameters are small fractional errors of the strengths

of quadrupoles and sextupoles. We set normally distributed

random errors with ±5%. For each BPM we compute trans-

verse momenta as functions of model parameters. Then we

fit the parameters to minimize | |pn− − pn+ | |.
Three model examples have been considered:

• quadrupole errors

• sextupole errors

• quadrupole and sextupole errors

In case of a set of quadrupole errors or sextupole ones the

method determines model parameters with great accuracy

as shown in Fig. 4.

In case when both types of errors are set model parameters

are not determined exactly, but their fitted values provide

good approximation for transfer map coefficients (Table 1).

DISCUSSION AND CONCLUSION
As is known, for a small amount of errors it is possible

to determine the exact error magnitudes. If there are many

errors in the lattice, then generally they can not be recover

exactly, but still can be fitted to obtain coefficients of the

transfer map. BPM data can be obtained either from turn-

by-turn measurements or by scanning orbit with correctors.
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Figure 4: a) Set (red) and fitted (blue) quadrupole errors; b) set (red) and fitted (blue) sextupole errors.

Table 1: Transfer Map Coefficients up to Second Order for

a single cell in case of quadrupole and sextupole errors.

with set errors with fitted errors
x -1.194 x + 9.308 px -1.194 x + 9.308 px

-13.68 x2 -83.81 x px -13.69 x2 -83.84 x px
40.96 px2 + 1.861 y2 41.19 px2 + 1.85 y2

-106.7 y py -419.6 py2 -106.9 y py -420.2 py2

px -0.2909 x + 1.431 px -0.2909 x + 1.431 px
-1.826 x2 -24.75 x px -1.826 x2 -24.78 x px
56.25 px2 -3.929 y2 56.4 px2 -3.938 y2

-66.4 y py -209. py2 -66.52 y py -209.3 py2

y 1.661 y + 10.31 py 1.661 y + 10.31 py
27.78 x y + 74.18 x py 27.8 x y +74.24 x py
-36. y px -331.9 px py -36.09 y px -332.5 px py

py -0.2548 y -0.9797 py -0.2548 y -0.9797 py
2.038 x y + 17.65 x py 2.044 x y + 17.69 x py
-41.71 y px -229.3 px py -41.78 y px -229.7 px py

BPM alignment errors can also be considered as param-

eters. BPM random errors are usually not important, but

special attention should be paid to such systematic errors

as monitor calibration and monitor rotation error. We also

would like to compare the method to other methods such as

Response Matrix Method. In the next stage, more realistic

model between BPMs should be considered, since BPM

measures the beam centroid position. As we noticed, COSY

INFINITY is limited with respect to the number of parame-

ters, computation of transfer maps and generating functions

is planned to be performed based on Lie transformation

technique.
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