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Abstract 

Microbunching instability (MBI) has been one of the 

most challenging issues in the transport of high-brightness 

electron beams for modern recirculating or energy 

recovery linac machines. Recently we have developed 

and implemented a Vlasov solver [1] to calculate the 

microbunching gain for an arbitrary beamline lattice, 

based on the extension of existing theoretical formulation 

[2-4] for the microbunching amplification from an initial 

density perturbation to the final density modulation. For 

more thorough analyses, in addition to the case of (initial) 

density to (final) density amplification, we extend in this 

paper the previous formulation to more general cases, 

including energy to density, density to energy and energy 

to energy amplifications for a recirculation machine. Such 

semi-analytical formulae are then incorporated into our 

Vlasov solver, and qualitative agreement is obtained 

when the semi-analytical Vlasov results are compared 

with particle tracking simulation using ELEGANT [5]. 

  

INTRODUCTION 

Theoretical formulation of MBI has been developed 

both in single-pass [2-4] and in storage-ring [6,7] 

systems. Hetfeis et al. [2] derived a linear integral 

equation in terms of the density modulation (or, the 

bunching factor). Huang and Kim [3] obtained the 

integral equation in a more compact way and outlined the 

microbunching due to initial energy modulation. This has 

become the building block for this work. 

To quantify MBI in a general transport system, we 

estimate the microbunching amplification factor (or, gain) 

along the beamline. For a long transport line of a 

recirculation machine, people usually treat the 

microbunching problem as a single-pass system. More 

generally, concatenations of sub-beamline sections were 

treated and the overall microbunching gain is speculated 

as the multiplication of gains from individual subsections 

[3,8]. Though this concatenation approach seems 

intuitive, we need a more rigorous and detailed 

justification of the validity. 

In this paper, we consider a more generalized situation 

where both initial density and energy modulations can be 

present and derive a set of integral equations for the 

microbunching evolution in terms of density and energy 

modulations along a general beamline. Then we study an 

example of recirculating beamline. From the simulation 

results, we have some interesting observations and have 

found such combined analysis of density and energy 

modulation can give more information than the previous 

treatment. Comparison of the results with ELEGANT 

tracking has given qualitative agreement. Possible 

extension of this study to include transverse 

microbunching is underway. 

 

THEORY 

From the (linearized) Vlasov equation, the evolution of 

the phase-space distribution function is governed by [3]  
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where the energy change due to collective effect can be 

induced by density modulation 
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Here f is the beam phase-space distribution function, 

X(s) = (x, x’, z, δ; s) the phase-space variables, N the 

number of particles, γ the Lorentz factor, Z(k) the 

longitudinal impedance per unit length, k the modulation 

wavenumber, and b(k) the density modulation. 

We then defined two quantities for subsequent analysis: 

b(k;s) =
1

N
dX f (X;s)e

− ikz (s )zs∫
                                           (3)

 

as the density modulation (or, bunching factor), and 

p(k;s) =
1

N
dX δ s( ) f (X;s)e− ikz (s )zs∫

                                      

 (4) 

as the energy modulation. 

In the absence of collective effect, we have 

  
f ( X ;s) = f

0
( X

0
) , i.e. the distribution function can be 

completely determined by the initial distribution. Assume 

initial unperturbed phase-space distribution is of the form 
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where n0 is the line density, ε0 and σδ are the emittance 

and energy spread of the beam, α0 and β0 are initial Twiss 

parameters. For simplicity, assume no chirp on the beam. 

Equations (3) and (4) can be analytically obtained to be 

b
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0
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;0) L.D.;s{ }                                                   (6) 

as the density modulation due to initial density 

modulation in the absence of collective effect, where 
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Here R5i denote standard linear transport matrix elements. 

Similarly, we have, in the absence of collective effect, 

b
0

e
(k;s)

 
as density modulation due to initial energy 

modulation; p
0

d
(k;s) as energy modulation due to initial 

density modulation; p
0

e
(k;s) as energy modulation due to 

initial energy modulation.
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In the presence of collective effect, the governing 

equation Eq. (1) can be re-written in terms of density or 

energy modulations: 

b(k;s) = b0 (k;s)−
ikz (s)

N
dτR56 (s '→ s) dXτ f0 (Xτ )e

− ikz (s )zs (Xτ )∫
dδ
dτ

⎛
⎝⎜

⎞
⎠⎟

0

s

∫
   (8) 

and 
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After linearizing Eqs.(8) and (9) and neglecting higher 

order terms in the integration, we can obtain four integral 

equations. Since the integral equations are linear in b(k;s) 

and p(k;s), they can be cast into a vector-matrix notation,
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where 
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Here I(τ) is the beam current at s = τ, IA is Alfven current, 
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U(s,τ) = R56(s)-R56(τ), V(s,τ) = R51(s)-R51(τ), and W(s,τ) = 

R52(s)-R52(τ). 

The concept of microbunching gain can in general be 

extended to have the four combinations,

   
b

d b
0

d (0) , b
e p

0

e(0) , p
d b

0

d (0) ,  and p
e p

0

d (0) , but hereafter 

we would use density and energy modulations b(k;s) and 

p(k;s) unless mentioned otherwise. It is worth mentioning 

that the matrix equation can be reduced to that in Ref. [9] 

for 
   
Ο K( )≪1. 

CONCATENATION OF BEAMLINE 

In this section, we would apply the generalized 

formulation to an example of recirculating machine [10]. 

This recirculating beamline consists of two arcs, for 

which are based on the original design in Ref. [11]. One 

of the arcs is composed of 4 triple-bend-achromatic 

(TBA) units. The arcs are achromatic and quasi-

isochronous. Let us separate this machine into four 

pieces: S1, ARC1, S2, and ARC2 (see Fig. 1). In this 

example, the beam is assumed 150 MeV in energy, peak 

bunch current 60 A, with normalized emittance 0.4 µm 

and relative energy spread 1.33×10
-5

. Figure 2 shows 

Twiss and momentum compaction functions along the 

beamline. Below we would estimate both the density and 

energy modulations at the end of the beamline but begin 

from different sub-beamline sections, and compare all of 

the obtained results from different concatenations. Let us 

consider the simplest case shown in Fig. 3, where the 

modulations evolve in the absence of collective effects 

(i.e. pure optics). The concatenations of the matrices T 

from sub-beamline sections match well with that of the 

start-to-end case, in our intuitive expectation. Now we 

include steady-state CSR [12,13], which only occurs in 

ARC1 and ARC2. Figure 4 shows the density and energy 

modulation spectra at the end of the beamline. From the 

figure, we can see differences between red/green and 

blue/black curves. We claim that the differences originate 

from correlation between ARC1 and ARC2. That is to 

say, for S2-ARC2 case, the initial conditions used in our 

analysis [b, p]
T
, given at the exit of ARC1, are not 

sufficient to fully describe the CSR interaction occurred 

upstream in ARC1. To confirm, we artificially switch off 

the CSR in ARC1 (but retain the CSR in ARC2) and find 

all the spectra of density and energy modulations from 

different concatenations agree well, as shown in Fig. 5. 

 
Figure 1: Schematic layout of the recirculating beamline 

(not to scale), from Ref. [10]. 

 

 
Figure 2: Twiss and momentum compaction functions 

along the beamline. 

 

  
Figure 3: Density (left) and energy (right) modulation 

spectra for pure optics. Both initial density and energy 

modulations are included at the beginning. 

 

In particle tracking, such correlation information 

resides in the 4-D/6-D beam phase-space distributions at 

the exits of every subsections of the beamline. For 
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qualitative comparison, let us consider the two cases in 

particle tracking: (i) start-to-end tracking (S1-ARC1-S2-

ARC2); (ii) S2-ARC2 with initial longitudinal phase-

space conditions deduced from those of (i) at the exit of 

ARC1 while the initial transverse phase-space distribution 

is set as that of pure optics at the exit of ARC1. Note that 

Case (ii) would be different from Case (i) in that the 

transverse-longitudinal correlation has been neglected. To 

be consistent, only steady-state CSR is included in the 

tracking simulation. For Case (i), we assume 5% initial 

energy modulation at 100 µm in the particle tracking. For 

the latter case, to obtain the initial conditions, we need to 

identify Twiss functions at the exit of ARC1 to 

characterize the transverse phase-space distribution but 

retain the longitudinal phase-space distribution of Case (i) 

as input at this particular position. 

  
Figure 4: Density (left) and energy (right) modulation 

spectra including CSR effect. 

 

  
Figure 5: Density (left) and energy (right) modulation 

spectra with CSR excluded in ARC1. 

 

Figure 6 compares the phase space and current density 

distributions for both cases at the end of the beamline. 

The obvious difference has qualitatively confirmed our 

Vlasov results; both the density and energy modulations 

from the start-to-end (S1-ARC1-S2-ARC2) case are 

larger than those starting from midway (S2-ARC) [14]. 

  

  
Figure 6: (Top) the longitudinal phase-space distributions 

at the end of the beamline for Case (i) (left) and Case (ii) 

(right); (bottom) the bunch current profile for case (i) 

(left) and (ii) (right). 

 

For further investigation of where the difference 

originates, it was found a microbunching structure resides 

in (x’,z) at the exits of ARC1 and of the beamline, as 

shown in Fig. 7. Indeed such structure is not included in 

the existing microbunching analysis. Further investigation 

is under way. This will be the subject of our next study. 

  
Figure 7: The microbunching structure in (x’,t) at the exit 

of ARC1 (left) and at the end of the beamline (right). 

 

To end this section, we consider a simple case with 

only initial density modulation. The microbunching gains 

evaluated from different concatenations are compared 

with the naïve multiplicative approach, shown in Fig. 8. It 

appears that the naïve approach gives an underestimate to 

the overall microbunching gain along the beamline. 

 

Figure 8: Density modulation spectra based on different 

considerations (with CSR included). 

 

SUMMARY AND DISCUSSION 

In this paper we have already extended the existing 

single-pass microbunching analysis from density to 

density modulation to the combination of both density 

and energy modulations throughout a beamline. The 

generalized formulation enables us to gain more 

understanding of the microbunching development along a 

beamline transport system. Our investigation of a 

particular recirculating machine indicates that the 

multiplication of gains from separate sub-beamline 

sections may underestimate the overall microbunching 

effect. This is because this way only takes into account 

the information of longitudinal density and energy 

modulations, while neglects the correlated structure 

residing in other dimensions. Such structure might trickle 

into other dimensions later downstream the beamline 

[15], e.g. back to (z, δ), as shown in Fig. 6. It can be seen 

that a more thorough description including the transverse 

microbunching, as well as the structure residing in the 

transverse-longitudinal (x, z) or (x’, z) dimension, shall be 

required for more complete analysis. 
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