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Abstract
Free Electron Lasers (FELs) are the only radiation sources

generating electromagnetic from THz to hard X-rays. There-
fore, it is crucial to develop rigorous simulation tools. Our
work is motivated by the desire to develop compact X-ray
sources based on radiation generated with optical undula-
tors. The currently existing softwares are usually written to
tackle special cases allowing for particular approximations,
such as 1D FEL theory, steady state, slow wave and forward
wave approximation, wiggler-averaged electron motion and
slice approximation. Many of the above approximations
are hardly valid when sub-femtosecond bunches interact
with intense optical lasers. The presented software aims at
the analysis of an FEL interaction without using any of the
above approximations. The developed tool apparently suf-
fers from a long computation time but offers a more accurate
picture of the radiation process. In order to overcome the
problem of multiple scales, we exploit the Lorentz boosted
coordinate system and implement a Finite Difference Time
Domain (FDTD) method combined with a Particle in Cell
(PIC) simulation in this frame.

INTRODUCTION
Free Electron Laser (FEL) concept as the only solution

for providing hard X-ray radiation offers valuable devices en-
abling the study of materials, crystallography and chemical
reactions [1]. The high operation costs of hard X-ray FEL
machines adds considerable importance to the prediction
of their performance based on accurate simulations. Op-
timizing a complete FEL facility and the investigation of
important effects in the FEL process are enabled by these
simulation tools. Our main motivation for pursuing a com-
plete and precise numerical analysis of FEL operation is the
simulation of FEL radiation in an optical undulator. This
technique has recently gained attention owing to its promise
in the development of compact X-ray sources. The currently
existing simulation tools for predicting the FEL dynamics
are usually written to tackle special cases and therefore par-
ticular assumptions or approximations are considered in their
formulations. However, the accuracy of these approxima-
tions may fail when FELs based on optical undulators are
being studied.
These assumptions were often indispensable steps in a

FEL simulation because of the multiple length scales in-
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volved in the process. Typical values encountered in a FEL
are ∼ 100 fs or 300 µm for the bunch length, ∼ 1 cm for the
undulator period, ∼ 10− 500m for the undulator length and
∼ 1 − 100 nm for the radiation wavelength. Comparing the
typical undulator lengths with radiation wavelengths imme-
diately communicates the very wide range of length scales
involved in FEL interactions. This makes the accurate FEL
simulation very challenging and calls the need for very high
computation costs to resolve all physical phenomena, which
is not practical even with existing supercomputer technology.
In order to overcome this problem, we exploit the Lorentz
coordinate system transformation into the bunch rest frame
and implement a Finite Difference Time Domain (FDTD)
method combined with Particle in Cell (PIC) simulation in
this frame. The use of a Lorentz boosted coordinate system
causes the very different length scales to transform into val-
ues with the same order of magnitudes, thereby considerably
reducing the computation cost. Consequently, the size of the
computational domain is reduced to slightly more than the
bunch size making the full-wave simulation numerically fea-
sible. We comment that the simulation of particle interaction
with an electromagnetic wave in a Lorentz boosted frame-
work is not a new concept. The advantage of this technique
is already demonstrated and widely used in the simulation of
plasma-wakefield acceleration. However, to the best of our
knowledge, this technique has never been used to simulate
the FEL process, which is the main goal of our study.

NUMERICAL IMPLEMENTATION
The Finite Difference Time Domain method is used for the

time domain solution of Maxwell’s equations. The equation
of motion is simultaneously updated using a Particle In Cell
(FDTD/PIC) method leading to the well-known FDTD/PIC
algorithm. There are several important considerations to
obtain reliable results converging to the real values. Exam-
ples are the method for electron bunch generation, particle
pusher algorithm and computational mesh truncation, which
need particular attention. For the sake of brevity, we do not
explain these features in this contribution and discuss their
precise implementation in another paper.

Finite Difference Time Domain-Particle In Cell
(FDTD/PIC)

FDTD is a superior choice for the time domain solution of
the electromagnetic fields due to its inherent properties for
explicit time update and zero DC fields in the solution [2].
As usual in a FEL solution, we solve the Helmholtz equa-
tions extracted from Maxwell’s equations for electromag-
netic waves propagating in free space. It is well-known that
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the proper definition of the vector potential (A) and scalar
electric potential (ϕ) recast Maxwell’s equations for E, B
into two uncoupled equations, namely vector Helmholtz
equation for A and scalar Helmholtz equation for ϕ:

∇
2A −

1
c2

∂2

∂t2 A = −µ0J (1)

∇2ϕ −
1
c2
∂2ϕ

∂t2 = −
ρ

ε0
(2)

c = 1/√µ0ε0 is the light velocity in vacuum. In the
derivation of above equation the Lorenz gauge condition
∇ · A = − 1

c
∂ϕ
∂t is used. The original E and B vectors are

obtained from A and ϕ as:

B = ∇ × A (3)

E = −
∂

∂t
A − ∇ϕ (4)

In addition to the above equations, the charge conservation
law written as

∇ · J +
∂ρ

∂t
= 0 (5)

should not be violated in the employed computational al-
gorithm. It is immediately observed that the Equations (1),
(2), (5) and the Lorentz gauge introduce an over-determined
system of equations. In a numerical solution algorithm,
one needs to neglect one of the equations and try to imple-
ment the numerical solution such that minimizes the error
is minimized. Due to the space-time discretization and the
interpolation of quantities to the grids, a suitable algorithm
that maintains charge conservation without violating energy
and momentum conservation does not exist. The approach
that we follow is using the discretized form of (1) with elec-
tron currents (i.e. macro-particles) as the source and solving
for the scalar potential using the Lorentz gauge. To obtain
the fields E and B at the grid points, we use momentum con-
serving interpolation, which interpolates the field values to
the grid points. The Lorentz gauge ∇ · A = − 1

c
∂ϕ
∂t is solved

similar to the Helmholtz equation through the discretization
using the central finite differences.

Particle in cell (PIC) method is the standard algorithm to
solve for the motion of particles within an electromagnetic
field distribution. The method takes the time domain data
of the fields E and B and updates positions and momenta
according to the relativistic equation of motion for macro-
particles:

∂

∂t
(γmv) = −e(E + v × B), and

∂r

∂t
= v, (6)

where r and v are the position and velocity vectors of the
macro-particles, e is the electron charge and m is its rest
mass. γ stands for the Lorentz factor of the moving particle.

Laboratory coordinate system

(a)
Bunch rest frame:

(b)

Figure 1: Schematic illustration of the Lorentz boosting
to transform the problem from the laboratory frame to the
bunch rest frame.

Lorentz Transformation
A novelty of the implemented technique is the solution

of Maxwell’s equations in the bunch rest frame. Based on
the already developed and matured FEL theory, it can be
demonstrated that coordinate transformation into the bunch
rest frame causes all the involved parameters such as bunch
length, undulator period, undulator length, and radiation
wavelength converge from widely different length scales
into values with the same orders of magnitude. In Fig. 1, we
present a schematic illustration of how transformation into
the bunch rest frame offers this advantage. In a typical FEL
problem, the FEL parameter ρFEL is about 10−3. Therefore,
simulation of FEL interaction with a bunch equal to the
cooperation length of the FEL (Lc = λl/(4πρFEL ), with
λl being the radiation wavelength) requires a simulation
domain only 100 times larger than the wavelength, which is
completely feasible using present computer technology.

RESULTS
We benchmark the developed software by simulating an

infrared FEL with the parameters tabulated in table 1 and
comparing the results with the one-dimensional FEL theory.
For this purpose, The bunch distribution is assumed to be uni-
form, the transverse energy spread is considered to be zero
and a minimal longitudinal energy spread is assumed. Fig-
ure 2a shows the transverse electric field sampled at 55 µm
in front of the bunch center. The logarithmic plot of the
radiated power at different positions along the undulator (z)
is also depicted in Fig. 2b. According to the 1D FEL theory
the gain length of the considered SASE FEL configuration
is LG = 22.4 cm, which is calculated as LG = 22 cm from
the slope of the power curve in Fig. 2b. The beam energy ac-
cording to the data in table 1 is 1.52mJ which for the bunch
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Table 1: Parameters of the Infrared FEL Configuration Con-
sidered as the First Example

FEL parameter Value
Bunch type Uniform cylinder
Bunch size (260 × 260 × 100) µm

Bunch charge 29.5 pC
Bunch energy 51.4MeV
Bunch current 88.5A

Longitudinal momentum spread 0.01%
Transverse momentum spread 0.0

Undulator period 3.0 cm
Magnetic field 0.5 T

Undulator parameter 1.4
Undulator length 5m

Radiation wavelength 3 µm
Electron density 8.7 × 1018

Gain length (1D) 22.4 cm
FEL parameter 0.006

Cooperation length 39.7 µm

length of 100 µm corresponds to Pbeam = 4.55GW beam
power. The estimated saturation power according to the 1D
theory is equal to Psat = ρPbeam = 2.7GW. The saturation
power computed by the FDTD/PIC code is 2.6GW.

(a) (b)

Figure 2: (a) The transverse field Ey at 55 µm distance from
the bunch center and (b) the total radiated power measured at
55 µm distance from the bunch center in terms of the traveled
undulator length.

In Fig. 3, snapshots of the radiated field profile at different
time instants are illustrated. The emergence of lasing radia-
tion at the end of the undulator motion is clearly observed
in the field profile.

Furthermore, snapshots of the bunch profile are also pre-
sented in Fig. 4. The main FEL principle which is the lasing
due to micro-bunching of the electron bunch is observed
from the field and bunch profiles.

CONCLUSION
A full-wave simulation tool for the FEL process is pre-

sented. Maxwell equations together with relativistic equa-
tion of motion are solved using FDTD/PIC algorithm for
the simulation of the underlying electron-wave interaction.
In order to make the simulations feasible Lorentz boosted

Figure 3: Snapshots of the radiated field profile taken at (a)
y = 0 and (b) z = 55 µm plane.

Figure 4: The bunch profile viewed from the y axis.

transformation into the bunch rest frame is applied. The
simulation results for a typical Infrared FEL are in good
agreement with those of the 1D FEL theory. Microbunching
as the core basis for FEL coherent radiation as well as natural
undulator focusing are clearly observed.
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