
REVIEW OF CPU AND GPU FADDEEVA IMPLEMENTATIONS
A. Oeftiger∗, R. De Maria, L. Deniau, K. Li, E. McIntosh, L. Moneta, CERN, Geneva, Switzerland

S. Hegglin, ETH, Zürich, Switzerland
A. Aviral, BITS, Pilani, India

Abstract
The Faddeeva error function is frequently used when com-

puting electric fields generated by two-dimensional Gaussian

charge distributions. Numeric evaluation of the Faddeeva

function is particularly challenging since there is no single

expansion that converges rapidly over the whole complex

domain. Various algorithms exist, even in the recent liter-

ature there have been new proposals. The many different

implementations in computer codes offer different trade-

offs between speed and accuracy. We present an extensive

benchmark of selected algorithms and implementations for

accuracy, speed and memory footprint, both for CPU and

GPU architectures.

INTRODUCTION
The Faddeeva function w(z) belongs to the family of error

functions and is defined as

w(z) = e−z
2

erfc(−iz) = e−z
2

(
1 +

2i√
π

∫ z

0

dt et
2

)
, (1)

where erfc denotes the complementary error function and z
a complex number. Computational algorithms to determine

complex error functions often rely on the Faddeeva function,

which is why it plays an important role in numeric libraries.

In electrodynamics, the Faddeeva function arises in numer-

ical computation of the electric fields of a two-dimensional

Gaussian charge distribution. In 1980, M. Bassetti and

G.A. Erskine derived the corresponding expression in the

context of beam-beam interaction in particle colliders [1].

A two-dimensional Gaussian charge density function

ρ(x, y) =
Q

2πσxσy
exp �

�
− �
�

x2

2σ2x
+

y2

2σ2y

�
�
�
�

(2)

generates the electric fields [2]

Eu =
Q

4πε0
u

∞∫
0

dt
exp

(
− x2

2σ2
x+t

− y2

2σ2
y+t

)

(σ2u + t)
√

(σ2x + t)(σ2y + t)
(3)

for u = x, y. M. Bassetti and G.A. Erskine proposed a

substitution which allows to express the electric fields in

terms of the Faddeeva function,

Ey + i Ex =
Q

2ε0

√
2π(σ2x − σ2y )

⎡⎢⎢⎢⎢⎢⎢⎣
w
�		
�

x + iy√
2(σ2x − σ2y )

�


�
− exp �

�
− x2

2σ2x
− y2

2σ2y

�
�
w
�		
�

x σy

σx
+ iyσx

σy√
2(σ2x − σ2y )

�


�

⎤⎥⎥⎥⎥⎥⎥⎦
(4)

given σx > σy .

∗ adrian.oeftiger@cern.ch, also at EPFL, Lausanne, Switzerland

In beam dynamics, numerical evaluation of Eq. (4) plays

a central role for modelling collective effects such as beam-

beam and beam-electron cloud interactions as well as non-

self-consistent direct space charge. Therefore, one encoun-

ters implementations of algorithms to evaluate w(z) in nu-
merous simulation codes, e.g. SixTrack [3], MAD-X [4],

PyORBIT [5], PyECLOUD [6,7] and PyHEADTAIL [6, 8].

This paper aims to establish a benchmark reference as

it is relevant to beam dynamics applications. We compare

six implementations of numerical algorithms to determine

w(z) in terms of accuracy, speed and memory footprint. As
various simulation codes are being developed in the Python

language, we choose to interface the different implementa-

tions to Python where we evaluate the benchmarks.

IMPLEMENTATIONS
The six implementations to be compared are

1. the function SciPy.special.wofz provided by the
Python library SciPy (version 0.14 and higher) which
wraps the Faddeeva package by MIT [9],

2. the CERN library Fortran 90 implementation as a modi-

fication of the original code written by K. Koelbig – it is

used in slightly differing variants in SixTrack, MAD-X,

PyECLOUD and PyHEADTAIL,

3. the CERN library F90 implementation ported to C, as

used in PyOrbit,

4. the CERN library F90 implementation ported to CUDA,

as used in PyHEADTAIL,

5. the ROOT implementation [10] extracted into a C stan-

dalone file, and

6. a C port of the recent Matlab implementation by

S.M. Abrarov and B.M. Quine [11, 12].

In addition we compare a variant used in SixTrack which

was provided by the late Dr. G.A. Erskine. It sacrifices

accuracy and memory for performance including vectorisa-

tion/pipelining and parallelisation with openMP [13].

All implementations including the benchmarking suite

have been gathered on a github.com repository [11]. The
C implementations have been interfaced via Cython [14]
compiled with gcc version 4.8.4. Fortran 90 has been inter-
faced using NumPy’s f2py technology (also using the GNU
compilers gfortran version 4.8.4). The CUDA kernel has

been interfaced using the library PyCUDA [15].

WEPOY044 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3090C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques



ACCURACY BENCHMARK
In order to assess the accuracy of each implementation,

we evaluate w(z) via the arbitrary floating-point precision
Python library mpmath [16] by employing Eq. (1). We fix a
precision of mpmath.mp.dps = 50 significant digits.
The nature of the aforementioned collective effects re-

quires a wide input range for the Faddeeva function. There-

fore we compare the accuracy of each implementation across

the domain T ∈ C defined by T = {x + iy |10−8 ≤ (x, y) ≤
108}. Figure 1 shows for each implementation the relative
deviation from the mpmath reference value. Here, the in-
puts sample T with 101 logarithmically uniformly spaced

values for the real and the imaginary part, respectively. The

maximal error values over T are listed in Table 1.

TIMING BENCHMARK
Timings have been performed for the same domain sam-

pling of T like the accuracy benchmark using time.time.
Each timing is repeated ten times, the median determines

the result (this is less prone to cache misses in the timing).

A given point in T is evaluated for an array of 5000 equal

entries: this approach reduces the overhead from the python

function call to the interfaced implementation to less than

one part in a thousand. In the case of the GPU, we have used

106 equal array entries for the CUDA timing.

The six enumerated implementations feature consistently

larger timings in the region {x+iy |x, y � 10} than elsewhere.
Table 2 lists the timings averaged over the whole domain T .
Timing for the fast SixTrack table Fortran 90 version was

performed separately using gfortran directly instead of

interfacing to Python via f2py. The multi-threaded version
with 10’000 array entries per call gives speedups of 1.98,
2.98 and 3.72 on 2, 3 and 4 processors with gfortran. The
samemulti-threaded test with the ifort compiler even gives
2.09, 3.25 and 4.16, respectively.

MEMORY FOOTPRINT
The estimates of memory usage are reported in Table 3

by counting the number of tabulated constants in look-up

tables used by series expansions or interpolations in the

various implementations. In particular, code size and other

internally used memory in math function calls such as pow,
exp and similar are neglected.

Figure 1: Relative accuracy of Faddeeva implementations w.r.t. the exact value (via Python’s mpmath) for complex inputs
ranging over 16 orders of magnitude. Large relative errors of the imaginary part in the left/bottom corner are affected by

the function value approaching 0. For instance, SixTrack imaginary relative errors approach 1, while the absolute error

remains below 10−8. The C version of the CERNLib algorithm yields identical results as the Fortran and CUDA versions.

Proceedings of IPAC2016, Busan, Korea WEPOY044

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3091 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



DISCUSSION
The SciPy implementation is clearly the most accurate

implementation, followed by the ROOT one. The CERN

library implementations in Fortran 90, CUDA and C feature

equivalent error patterns confirming that they implement the

same algorithm correctly. However, it is considerably less

accurate than the other algorithms. The Fortran 90 timing

seems to suffer from the f2py compilation, which is known
to considerably slow down the bare Fortran performance.

The SixTrack table version trades accuracy (remaining

below 10−8 absolute deviation) with speed. This is achieved
by using a table of values computed by the CERNLib For-

tran 90 version and interpolated using a third order divided-

difference interpolation in the rectangle spanned from (0, 0)
to (7.77, 7.46). For arguments outside the rectangle a two-
term rational approximation is used. The speed-up is esti-

mated to be 20-fold with respect to the CERNLib Fortran

90 version. While the loss of precision is substantial but

always less than 10 × 10−8 in absolute terms it is adequate
for SixTrack and for MADX-SC [17]. The Matlab version

from 2014 [12] is reported to be the most accurate Faddeeva

implementation [18]. Our C port features at most 1 × 10−14
difference to the Matlab values for the domain T . However,
we cannot reproduce the claimed accuracy, specifically in

the imaginary plane we obtain rather large relative devia-

tions for very small input magnitudes. The respective source

code and evaluation data can be found in our github.com
repository [11].

CONCLUSION
Several algorithms and implementations of the Faddeeva

functions have been benchmarked for accuracy, speed and

memory footprint. The Faddeva package distributed in

SciPy is the best in terms of accuracy and speed, however
a version for GPU does not exist yet and the porting might

introduce issues due to global memory latency with the large

tables needed. The same reasoning applies to the SixTrack

table. The ROOT version appears to be a better starting

point provided a few improvements could be implemented.

Table 1: Accuracy Results for Faddeeva Implementations as

Maximal Deviation From Reference Value Over the Domain T

implementation real error imag. error

SixTrack table 3.249 × 10−5 2.715 × 10−1
CERNLib F90 4.209 × 10−5 5.165 × 10−9

CERNLib C / CUDA 4.208 × 10−5 5.165 × 10−9
ROOT 1.870 × 10−7 8.257 × 10−13

Matlab C port 4.552 × 10−10 2.773 × 10−7
SciPy / MIT 2.046 × 10−14 2.976 × 10−13

Table 2: Timing Results for Faddeeva Implementations as

Averages Over the Domain T . A call refers to evaluating a

single array entry. The timing of the table based SixTrack

Fortran 90 version is estimated to be about 20 faster than

CERNLib F90, it has been timed in pure Fortran though as

opposed to the CERNLib F90 (via f2py).

CUDA 0.005 μs/call

SixTrack table 0.031 μs/call

SciPy / MIT 0.132 μs/call

ROOT 0.172 μs/call

Matlab C port 0.278 μs/call

CERNLib C 0.379 μs/call

CERNLib F90 0.655 μs/call

Table 3: Memory Footprint Estimates for Faddeeva Imple-

mentations

Matlab C port <1KByte

CERNLib C / F90 / CUDA <1KByte

ROOT 2.6KBytes

SciPy / MIT 11.5KBytes

SixTrack table 1800KBytes

APPENDIX
Machine Specifications
The machine specifications are outlined in the following

table.

Table 4: Relevant CPU and GPU Specifications

CPU 2× Intel Xeon E5-2630 (v1)
CPU cores 2 × 6

RAM 256GB DDR3

CPU clock rate 2.30GHz

CPU L3 cache 15MB

instruction set Intel AVX

FP32 performance 0.1 TFLOPS

GPU NVIDIA Tesla C2075

CUDA cores 448

RAM 5.3GB DDR5

GPU clock rate 1.15GHz

CUDA computing capability 2.0

FP32 performance 1.0 TFLOPS

The server machine runs the Linux distribution Ubuntu

under version 14.04.

WEPOY044 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3092C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques



REFERENCES
[1] M. Bassetti and G.A. Erskine, “Space Charge Effects and

Limitations in the CERN Proton Synchrotron”, in Proc. 4th
Int. Particle Accelerator Conf. (IPAC’13), Shanghai, China,
May 2013, paper WEPEA070, pp. 2669-2671.

[2] H. Wiedemann, “Statistical and Collective Effects”, in Parti-
cle Accelerator Physics, 3rd ed. New York: Springer, 2015,

p. 644.

[3] SixTrack, 6D Tracking Code, Accelerator Beam Physics

Group, CERN, Switzerland, 2016, http://cern.ch/
sixtrack/.

[4] MAD-X, Methodical Accelerator Design, Accelerator Beam

Physics Group, CERN, Switzerland, 2016, http://cern.
ch/madx/.

[5] A. Shishlo, S. Cousineau, J. Holmes, and T. Gorlov, “The

Particle Accelerator Simulation Code PyORBIT”, in Proc.
Int. Conf. on Computational Science (ICCS’15), 2015, vol.
51, p. 1272-1281.

[6] PyCOMPLETE, Python Collective Effects Library, Accelera-

tor Beam Physics Group, CERN, Switzerland, 2016, http:
//github.com/PyCOMPLETE/.

[7] G. Iadarola and G. Rumolo, “PyECLOUD and Build-up Sim-

ulations at CERN”, in Proc. 5th Workshop on Electron-Cloud
Effects (ECLOUD’12), La Biodola, Italy, June 2012, CERN
Yellow Report CERN-2013-002, pp. 189-194.

[8] E. Metral et al., “Beam Instabilities in Hadron Synchrotrons”,

in IEEE Transactions on Nuclear Science, vol. 63, no. 2, Apr.
2016, pp. 1001-1050.

[9] Faddeeva Package, Massachusetts Institute of Technol-

ogy, Boston, USA, http://ab-initio.mit.edu/wiki/
index.php/Faddeeva_Package

[10] R. Brun and F. Rademakers, “ROOT - An Object Oriented

Data Analysis Framework”, in Nucl. Inst. & Meth. in Phys.
Res. A 389, 1997, pp. 81-86. See also http://root.cern.
ch/.

[11] PyCOMPLETE Faddeevas, Benchmarking suite and Fad-

deeva implementation sources, Accelerator Beam Physics

Group, CERN, 2016, http://github.com/PyCOMPLETE/
faddeevas/.

[12] Matlab Central, file ID: #47801, submitted on Sept. 10, 2014.

[13] N. D’Imperio et al., “Experience with OpenMP for MADX-
SC”, in CERN-ACC-2014-0075 and BNL C-A/AP/515, July

2014.

[14] S. Behnel et al., “Cython: The Best of Both Worlds”, in
Computing in Science Engineering, vol. 13, no. 2, 2011, pp.
31-39. See also http://cython.org/.

[15] A. Klöckner et al., “PyCUDA and PyOpenCL: A Scripting-

based Approach to GPU Run-time Code Generation”, in Par-
allel Computing, vol. 38, no. 3, Mar. 2012, pp. 157-174. See
also http://documen.tician.de/pycuda/.

[16] F. Johansson et al., “mpmath: a Python library for Arbitrary-
precision Floating-Point Arithmetic (version 0.19)”, 2016,

http://mpmath.org/.

[17] E. McIntosh, R. De Maria, and M. Giovannozzi, “Investi-

gation of Numerical Precision Issues of Long Term Single

Particle Tracking”, in Proc. of Int. Particle Accelerator Conf.
(IPAC2013), Shanghai, China, MOPWO026, 2013.

[18] S.M. Abrarov and B.M. Quine, “Accurate Approximations

for the Complex Error Function with Small Imaginary Ar-

gument”, in Journal of Mathematics Research, vol. 7, no. 1,
2015, pp. 44-53.

Proceedings of IPAC2016, Busan, Korea WEPOY044

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3093 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


