
EVOLUTION OF PYTHON TOOLS FOR THE SIMULATION OF
ELECTRON CLOUD EFFECTS

G. Iadarola∗, E. Belli, K. Li, L. Mether, A. Romano, G. Rumolo, CERN, Geneva, Switzerland

Abstract
PyECLOUD was originally developed as a tool for

the simulation of electron cloud build-up in particle
accelerators. Over the last five years the code has become
part of a wider set of modular and scriptable Python tools
that can be combined to study different effects of the e-cloud
in increasingly complex scenarios. The Particle In Cell
solver originally included in PyECLOUD later developed
into a stand-alone general purpose library (PyPIC) that
now includes advanced features like a refined modeling
of curved boundaries and optimized resolution based on
the usage of nested grids. The effects of the e-cloud on the
beam dynamics can be simulated interfacing PyECLOUD
with the PyHEADTAIL code. These simulations can be
computationally very demanding due to the multi-scale
nature of this kind of problems. Hence, a dedicated
parallelization layer (PyPARIS) has been recently developed
to profit from parallel computing resources in order to
significantly speed up the computation.

INTRODUCTION
Electron cloud effects pose several challenges to the oper-

ation of the Large Hadron Collider (LHC) at CERN when
operating with the nominal bunch spacing of 25 ns. The
machine configuration had to be carefully optimized in order
to avoid e-cloud induced instabilities, while the power de-
posited by the electrons on the beam screens of the cryogenic
magnets constitutes a major load for the LHC cryogenic sys-
tem [1].
As the understanding of these phenomena heavily relies

on macroparticle simulations, in the latest years a significant
effort has been devoted to the development of numerical
tools to model the formation of the e-cloud and its effect on
the machine systems and on the beam dynamics.

A PYTHON SIMULATION TOOLKIT
Experience has shown that these simulation tools need to

be very flexible in order to cover the variety of simulation
scenarios that are of interest for the LHC and its injector
chain. In this respect we found it convenient to abandon
the idea of a monolithic code with a rigid user interface in
favor of a set of tools in the form of Python [2] libraries.
In this way the user can use the power of Python scripting
to define arbitrarily complex simulation setups and use the
multitude of freely available Python packages to perform
post-processing, data manipulation and storage, plotting etc.

∗ Giovanni.Iadarola@cern.ch

The Python language is also used for a large fraction of the
implementation, which proved to ease significantly the pro-
cess of development and maintenance. Compiled languages,
namely C and FORTRAN, are used to program computa-
tionally intensive tasks, using cython [3] and f2py [4] to
interface these parts to the Python code.

PyECLOUD
PyECLOUD [5] is the core of our e-cloud simulation

toolkit. It is a 2Dmacroparticle (MP) code for the simulation
of the electron cloud formation in accelerator structures. It is
developed and maintained at CERN since 2011 [6] following
the legacy of the ECLOUD code [7].
In the classical "e-cloud buildup" simulation mode, the

code generates “primary” electrons due to ionization of the
residual gas and “photoemission” driven by synchrotron ra-
diation, evaluates the forces acting on the electrons due to
the interaction with the particle beam and with the electrons
themselves (the latter is done using a Particle-In-Cell – PIC
– algorithm) and tracks the electrons accounting for the pres-
ence of externally applied magnetic fields. When an electron
impacts on the chamber’s walls, secondary electrons can be
generated according to the implemented secondary emis-
sion models. One of the peculiarities of these simulations
is that the number of electrons grows exponentially during
the buildup process, spanning several orders of magnitude.
For the calculation to remain computationally affordable,
the number of MPs cannot stay proportional to the number
of electrons. Instead, the number and the mean size of the
MPs need to be dynamically adapted during the simulation.
Details about the implemented models and algorithms can
be found in [5, 8].
Over the years several features were added to the code

allowing buildup simulations for increasingly complex sce-
narios: possibility of simulating multiple beams, accurate
tracking routines for the simulation of non-uniformmagnetic
fields (e.g. quadrupoles, combined function magnets), arbi-
trarily shaped polygonal chamber and non-uniform surface
properties.
Figure 1 shows an example of a simulation where a non-

convex chamber shape was used to model a pumping slot in
the LHC beam screen with the baffle shield installed behind
the opening [9].

PyECLOUD-PyHEADTAIL simulation setup
To simulate the impact of the e-cloud on the beam dynam-

ics we decided to drop the traditional approach of having a
tool that is completely separated from the buildup simulator.
We decided instead to build an interface which would al-
low combining PyECLOUD with the PyHEADTAIL beam
dynamics code [10, 11].

Proceedings of IPAC2017, Copenhagen, Denmark THPAB043

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3803 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Figure 1: Horizontal component of the electric field gener-
ated by the electron cloud in the region of a pumping slot of
the LHC arc beam screen [9].

In PyHEADTAIL the accelerator is modeled as a list of
Python objects arranged in a ring structure, which perform
different actions on the beam (longitudinal and transverse
tracking, wake fields, feedbacks, space charge, etc.). PyE-
CLOUDallows the definition of electron cloud objects which
can be inserted in a PyHEADTAIL ring. When receiving a
bunch from PyHEADTAIL the e-cloud object performs the
simulation of the electron dynamics as for the buildup simu-
lations with two notable differences: instead of using a pre-
defined rigid distribution, the beam field at each time-step
is computed by applying a PIC algorithm to the PyHEAD-
TAIL MPs in the corresponding beam slice; the electric
forces from the e-cloud evaluated by the PIC are applied not
only to the e-cloud MPs but also to the beam MPs [12].
This solution was possible thanks to the highly modu-

lar structure of both PyECLOUD and PyHEADTAIL and
allowed for a significant reduction of the work needed for
development and maintenance. Moreover, all the advanced
features available in PyECLOUD for the simulation of the
e-cloud buildup became automatically available also for the
simulation of the beam dynamics in the presence of e-cloud.
Furthermore, this setup could be generalized for the simula-
tion for multi-bunch Fast Beam Ion Instabilities [13].

PyPIC
Initially PyECLOUD included a simple PIC solver. Later

on we decided to provide it as a separated Python library,
called PyPIC [14], in order to make it available to other appli-
cations. By now the library contains different solvers, using
both FFT methods and Finite Difference (FD) methods. The
latter are more frequently used for e-cloud simulations as
they are more suited to model arbitrarily shaped chambers.
To improve the field calculation accuracy in the presence of
curved boundaries (as this is critical in multipacting simu-
lations), the “Shortley-Weller” refinement of the boundary
conditions was implemented [15, 16].
As the PIC solution needs to be performed at each time

step, its execution has a strong impact on the overall compu-
tational time. Therefore a significant effort was put into the

Figure 2: Error on the computation of the electric field for
a charge distribution corresponding to the LHC beam at
6.5 TeV. The PyPIC single grid and multigrid solvers are
compared as a function of the distance from the bunch center.
In the legend: computation time the field map evaluation.

optimization of this component. As the grid and the shape
of the boundary stay constant during the simulation, it is
possible to compute and store the LU factorization [17] of
the FD matrix and apply the back-substitution at each step.
It was found that, as for circuit simulation problems, the
KLU library outperforms the more common SuperLU for
these very sparse matrices [18]. A cython wrapper [19] of
the KLU library [20] was written to interface the library to
the PyPIC code.

An important feature of this kind of simulations is that the
required PIC resolution is not uniform over the simulation
domain. In fact a strong gradient in the charge distribution
is observed at the beam location (pinch effect) while the
distribution is much smoother elsewhere. It is therefore con-
venient to employ nested grids with different resolution to
refine the PIC accuracy only where needed. This was imple-
mented following the approach described in [21] and was
found to have a dramatic impact on the processing time [22].

Figure 3: Required time to simulate the interaction of the
LHC beam at high energy with the e-cloud in dipoles and
quadrupole magnets, using different simulation setups. For
details on the simulated scenario see [23].

THPAB043 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3804Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



Figure 4: Schematic representation of the two main objects used for the parallel simulation of e-cloud driven instabilities.

Figure 2 shows an example in which, using three nested
grids, it is possible to keep the calculation error below 4%
over the entire simulation domain and to reduce the compu-
tation time required for the linear system solution by over
a factor of 40 with respect to a single grid solver with the
same target accuracy.

PyPARIS
Electron cloud instabilities observed at high energy in the

LHC have instability rise-times of the order of 104 turns.
Considering the necessity of having a sufficient time res-
olution of the electron motion during the bunch passage,
this translates into over 107 time steps to be simulated. Fig-
ure 3 shows the computational time for a shorter simulation
(103 turns). Even profiting from the speedup from the PyPIC
multigrid, the time requirements are still prohibitive. To
tackle these cases we resorted to parallel computing.
The simulation is performed by multiple processes orga-

nized in a ring structure. Each process takes care of the
interaction of the beam with a fraction of the accelerator.
The different bunch slices are traveling along the ring of pro-
cessors as they do in the real accelerator. At the end of each
turn all particles need to be recollected by a “master” process
for longitudinal tracking and re-slicing. For this reason the
expected speed-up is not proportional to the number of pro-
cesses as shown in Fig. 5 (more details can be found in [23]).
The parallelization is realized by an additional Python layer
called PyPARIS (Python PAralallel RIng Simulator, [24]) in-
dependent from PyECLOUD and PyHEADTAIL. This was
done in order to keep as separated as possible the physics
and the parallelization code (a developer who is unaware
of the parallelization details should still be able to extend
the physics part) and to minimize the number of changes in
pre-existing tools (to avoid extensive re-validation). This is
implemented as shown in Fig. 4. The simulation is managed
by two Python objects that are instantiated by each process:

Figure 5: Observed speedup as a function of the number of
cores (blue dots), compared to the theoretical expectation
for the implemented parallelization strategy (solid line) and
to the ideal speedup S = Ncores. For details on simulated
scenario see [23].

a “RingOfCPUs” object, implemented in PyPARIS, takes
care of all the tasks related to the parallelization; a “Simula-
tion” object, which can be customized by the user, defines
the physics of the simulation using the other libraries of the
toolkit (PyHEADTAIL, PyECLOUD, etc.). More informa-
tion on the implementation can be found in [24].
Tests performed at the INFN-CNAF cluster showed a sat-
isfactory speedup as shown in Figs. 3 and 5. We found
particularly convenient to perform our studies using 8 CPU
cores per simulation, as this allows achieving a practically
ideal speedup (S = Ncores) while being able to launch several
simulations at the same time to study parametric dependen-
cies. This simulation mode has been extensively used to
study LHC e-cloud driven instabilities [25].

Proceedings of IPAC2017, Copenhagen, Denmark THPAB043

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3805 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



ACKNOWLEDGMENTS
The authors would like to thank the INFN-CNAF institute

in Bologna (Italy) for providing support and access to their
computing facilities. Research supported by the HL-LHC
project.

REFERENCES
[1] K. Li et al., “Electron Cloud Observations during LHC Oper-

ation with 25 ns Beams”, in Proceedings of IPAC2016, Busan,
Korea, paper TUPMW017, 2016.

[2] https://www.python.org

[3] https://www.cython.org

[4] https://docs.scipy.org/doc/numpy-dev/f2py/

[5] https://github.com/PyCOMPLETE/PyECLOUD/wiki

[6] G. Iadarola and G. Rumolo, “PyECLOUD and build-up simu-
lations at CERN”, Proceedings of the ECLOUD12Workshop,
CERN-2013-002, pp. 189-194.

[7] F. Zimmermann, “A Simulation Study of Electron-Cloud In-
stability and Beam-InducedMultipacting in the LHC”, CERN
LHC Project Report 95, SLAC-PUB-7425 (1997).

[8] G. Iadarola, “Electron cloud studies for CERN par-
ticle accelerators and simulation code development”,
https://cds.cern.ch/record/1705520CERN-
THESIS-2014-047, 2014.

[9] A. Romano et al., “Effect of the LHC Beam Screen Baffle
on the Electron Cloud Buildup”, Proceedings of IPAC2016,
Busan, Korea, paper TUPMW016, 2016.

[10] https://github.com/PyCOMPLETE/PyHEADTAIL/wiki

[11] K. Li et al., “Code Development for Collective Effects”, in
Proc. 57th ICFA Advanced Beam Dynamics Workshop on
High-Intensity and High-Brightness Hadron Beams (HB16),
Malmo, Sweden, http://jacow.org/hb2016/papers/
weam3x01.pdf, paper WEAM3X01, 2016.

[12] G. Iadarola, “PyHEADTAIL-PyECLOUD development”,
presentation at theElectron Cloud Meeting, 27 May 2015,
CERN, Geneva. https://indico.cern.ch/event/
394530/

[13] L. Mether et al., “Numerical Modeling of Fast Beam Ion
Instabilities”, in Proc. 57th ICFA Advanced Beam Dynamics
Workshop on High-Intensity and High-Brightness Hadron
Beams (HB16), Malmo, Sweden, paper WEAM4X01, 2016.

[14] https://github.com/PyCOMPLETE/PyPIC/wiki

[15] G. H. Shortley and R. Weller, “The numerical solution of
Laplace’s equation” Journal of Applied Physics 9.5 (1938):
334-348.

[16] G. Iadarola, “PyECLOUD development: accurate space
charge module”, presentation at the Electron Cloud Meet-
ing, 27 Jun 2014, CERN, Geneva. https://indico.cern.
ch/event/320287/

[17] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for
sparse matrices. Oxford: Clarendon press, 1986.

[18] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, A
Direct Sparse Solver for Circuit Simulation Problems”, ACM
Trans. Math. Softw. 37, 3, Article 36, 2010.

[19] https://github.com/PyCOMPLETE/PyKLU

[20] http://faculty.cse.tamu.edu/davis/suitesparse.
html

[21] J.-L. Vay et al., “Mesh refinement for particle-in-cell plasma
simulations: Applications to and benefits for heavy ion fu-
sion”, Laser Particle Beams, vol. 20, no. 4, pp. 569–575,
2002.

[22] E. Belli et al., “Multigrid solver in PyPIC”, presentation at
the Electron Cloud Meeting, 2 Sep 2016, CERN, Geneva.
https://indico.cern.ch/event/547910/

[23] G. Iadarola et al., “PyPARIS: parallelisation strategy for
PyECLOUD-PyHEADTAIL simulations”, presentation at
the Electron Cloud Meeting 2 Sep 2016, CERN, Geneva.
https://indico.cern.ch/event/547910/.

[24] https://github.com/PyCOMPLETE/PyPARIS/wiki

[25] A. Romano et al., “Macroparticle Simulation Studies of LHC
Beam Dynamics in the Presence of the E-Cloud”, presented
at IPAC’17 Copenhagen, Denmark 2017, paper TUPVA018,
this conference.

THPAB043 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3806Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques


