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Abstract

A parasitic effect of k-modulation is that if the modulated

quadrupole has an offset the modulation results in a dipole

like kick forcing the beam on a new orbit. This paper presents

a new method using the orthonormality of singular value

decomposition that uses this new orbit to estimate the offset.

This could be used to measure misalignments or crossing

angles but could also help improve k-modulation β measure-

ments by predicting the parasitic tune change caused by the

new orbit not passing through the centre of the sextupoles.

INTRODUCTION

K-modulation is one of the most precise tools for measur-

ing the β∗-function in the Large Hadron Collider (LHC) [1].

By changing the strength of the innermost quadrupole and

measuring the subsequent change in tune, ∆Q, one can com-

pute the average β-function in the quadrupole using

βav = ±4π
∆Q

∆kL
(1)

where ∆k and L are the change in k and length of the

quadrupole.

From βav in both quadrupoles one can compute the loca-

tion and value of the minimum β function and hence recon-

struct the value of β∗ by solving the quadratic equation

βav = βw +
(L∗ − w)2

βw
(2)

where L∗ is the length of the final drift going from the quad

to the interaction point (IP) and w and βw are the offset or

waist and the value of the minimum β-function, β∗.

A parasitic effect of the modulation is that if the

quadrupole is misaligned the change in k causes a kick pro-

portional to the offset, xq , and ∆k [2]. This kick forces the

beam on a new closed orbit, given by

∆x =
β cot(πQ)∆kL

2 + β∆kL cot(πQ)
xq

∆x ′
=

[1 − α cot(πQ)]∆kL

2 + β∆kL cot(πQ)
xq

(3)

in the quadrupole [3]. Where α and β are the twiss func-

tions in the centre of the quadrupole, L is the length of the

quadrupole and Q is the machine tune. The transfer matrix

M of the machine can be used to work out the new orbit at

any point in the machine [4] as expressed by Eq. 4.

∆x(s) = M11(s, s0)∆x + M12(s, s0)∆x ′ (4)

On the one hand this new orbit causes the beam to not go

through the centres of the sextupoles resulting in an addi-

tional change in tune. On the other hand, measurements of

this new orbits can give information about the offset of the

quadrupole and help align it or estimate the crossing angle.

This information can also be used to predict the new orbit

through the sextupoles and hence predict and correct for the

parasitic change in tune.

EFFECT OF PARASITIC TUNE CHANGE

ON VDM OPTICS

An extreme example of where the parasitic tune change

has a drastic effect on the accuracy of k-modulation β-scans

is when using van der Meer (vdM) optics. This optics is

used during calibration scans and it is essential to know β∗

accurately [5]. The significance of the vdM optics is that it

is symmetric and has a β∗ close to L∗, which turns out to be

the maximum possible β∗.

Mathematical Properties of β∗ Reconstruction

For simplicity we will assume the case with w = 0 and

βw = β
∗ to modify Eq. 1 to

βav = β
∗
+

L∗2

β∗
(5)

By taking the derivative of this, one can work out that the

relative errors of βav and β∗ relate as

σβav

βav
=

�

�

�

�

∂βav

∂β∗

�

�

�

�

σβ∗

βav
=

�

�

�β∗ − L∗2

β∗

�

�

�

β∗ + L∗2

β∗

σβ∗

β∗
(6)

In the nominal optics the beam is squeezed at the IP result-

ing in β∗ << L∗. In this case L∗2

β∗ becomes the dominating

factor in the numerator and denominator of Eq. 6 resulting

in
σβav

βav

≈
σβ∗

β∗ . This means that an error in βav of a few

percent caused, for example, by an error in ∆Q would result

in an error in β∗ of a few percent.

This property drastically changes when the vdM optics are

applied. Since for these optics β∗ ≈ L∗ the full expression

of eq. 6 becomes relevant. In the limiting case of β∗ → L∗,
�

�

�β∗ − L∗2

β∗

�

�

� → 0, meaning that a small error in the βav causes

an infinite error in β∗.

A further problem arises when examining the solutions

to Eq. 5 given by

β∗ =
βav ±

√

β∗av − 4L∗2

2
(7)

of which only the ’-’ root is physical.
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As β∗ → L∗, βav → 2L∗ so that
√

β2
av − 4L∗2 → 0,

consequently the physical and unphysical solutions move

close together. For most numerical solvers there is no way to

differentiate between these two solutions. Finally, one has to

recognise that in a case where an error in the measurement

of βav gives βav < 2L∗ means that
√

β2
av − 4L∗2 will be

complex. This would cause solving methods to run into

errors and give rise to unphysical solutions.

Testing Detailed β∗ Reconstruction

In order to see how much these problems hold up when

the reconstruction is done using all its details a short algo-

rithm was written that scans through ∆Q starting at 5 % less

and going up to 5% more than the change predicted by the

MADX [6] model and then outputs the β∗ estimate for each

case. The results are shown on a 3D plot in Fig 1 and the

result from the correct ∆Q is highlighted by a red circle.

Figure 1: Plot Showing Relative Error in β∗ Obtained from

Offset ∆Q Inputs

As one can see from Fig. 1, all effects predicted by the

simple calculations in the previous section materialise in this

simulation. Whilst ∆Q from the ideal model give exactly

the right β∗, the estimate for β∗ changes drastically for small

∆Q around the ideal solution.

Moreover, solutions jump between two sides of a parabolic

surface. The top half of this surface corresponds to the

unphysical solutions, which lie very close to the physical

ones. Finally, one can also see a triangular flat plane for small

∆Q values. If ∆Q is too small then this means βav < 2L∗

in the quadrupole, giving complex solutions of which only

the constant real part is returned.

DATA

The methods described in this paper were applied to data

obtained from k-modulation scans of vdM optics in the LHC,

taken on 7th October 2016 during fill 5380. Before perform-

ing these measurements the β functions in the machine were

measured and corrected using an alternating current dipole

and β beat analysis.

The innermost quadrupoles in interaction region (IR) 1

and 8 were modulated with the crossing angles switched on.

A second set of measurements in IR 8 were then taken with

the crossing angles turned off.

Figure 2: Design β Functions and Orbit of Beam 1 of vdM

Optics around IP 8 from MADX simulation

shows thedesign β-functionsand orbits for beam

1 around IP 8 for a crossing angle of −230 µrad obtained

from a MADX simulation. As one can see the crossing angle

causes the horizontal orbit in the quadrupoles to be non-zero

and hence we expect a closed orbit response as described by

Eq. 3 when the crossing angle is turned on. Consequently,

the β∗ value reconstructed with the crossing angle on was

much less accurate than that with the angle turned off.

As well as using data from measurements, the method

was also tested on data produced by MADX simulations of k-

modulation. This data helps showing whether the predicted

parasitic tune change is correct as it can easily be compared

to an ideal machine.

DETERMINING THE OFFSET

Method

Equations 3 and 4 show that the magnitude of the change

in orbit at any position is directly proportional to the

quadrupole offset xq . Hence by working out the ratio be-

tween the measured orbit and the orbit predicted for unity off-

set, one can estimate the offset of the modulated quadrupole.

The LHC measures and records the position of each beam

at 544 locations every second so it is desirable to exploit all

the information in the data statistically to estimate the offset

as accurately as possible. A common statistical method is

storing the orbit data in a matrix B such that Bi j = xj(ti)

and then decomposing it using singular value decomposition

(SVD) [7].

Figure 2
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When applying SVD to model data, Bm, produced using

Eq. 3 and eq. 4 for ∆xq = 1 m, ∆k from the measurements

and TWIS functions from the ideal MADX model, one only

gets one significant mode. This implies that the data can be

decomposed to be the product of two orthonormal vectors,

um and vm and a singular value sm such that

Bm = umsmv
T
m. (8)

The data from the actual experiment is also stored in a

matrix, Bdata, of the same format. This matrix should be

proportional to the model matrix by a factor of xq plus a

noise term N so that

Bdata = umsmv
T
mxq + N. (9)

By using the orthonormal property of the SVD vectors

one can get an estimate of xq by equating

u
T
mBdatavm

sm
= xq +

u
T
mNvm

sm
(10)

where the second term should cancel out for a large enough

sample size. In traditional SVD cleaning, the data is decom-

posed and modes with small singular values are identified

as noise and eliminated. What is special about this method

is that instead of just eliminating modes that could be noise

it specifically only selects the mode that corresponds to the

closed orbit response to the modulation.

Results

This method was applied to the data at IP 8 with the

crossing angles turned off and on. The results for the two

quadrupoles are shown in Table 1.

Table 1: Orbit Offset of Beams 1 and 2 in Left and Right

Quadruples of IR 8 Determined from Measurements with

Crossing Angles turned off and on and from MADX Model

Orbit Offset / mm

No Crossing Crossing Model

x y x y x y

Left 1 0.517 −0.692 4.73 −0.725 4.27 −1.04

Left 2 0.702 1.21 −4.73 1.34 −4.62 0.957

Right 1 −0.172 −1.36 −5.71 −1.35 −4.62 −0.957

Right 2 −0.553 0.112 4.17 0.103 4.27 0.104

As expected, the horizontal offset obtained from this

method differs when the crossing angle is on and off but ver-

tical offset remains the same. Table 1 also contain the model

offsets at the centre of the quadrupoles due to the crossing

angle and the separation. They show that this method is very

precise at estimating the offset due to the crossing angle as

it is in good agreement with the model.

Crossing Angle

Another application of this method could be to use the

offset estimate to estimate the crossing angle of the beams.

To compute this one can simply divide the difference in the

offsets of the two beams by the the length of the drift plus

the half length of the quadrupole.

In order to test this the algorithm was applied to data

produced using a MADX model that simulated the shunting

of the left and right quadrupoles in IP8. In the model the

half crossing angle was set to 500 µrad and the separation

was turned on. Using these results for the x plane the half

crossing angle is computed to be 503 µrad on the left and

504 µrad on the right, which is very close to the actual

crossing angle.

This method can also be tested by applying it to the data

discussed in [8], where a similar method was applied to

determine the orbit in the quadrupoles and hence compute

crossing angles during LHC fill 5422. During this fill the

half crossing angle was set to 140 µrad but was measured

to be 155 ± 10 µrad in IP1 and 153 ± 12 µrad in IP5. Using

the SVD method on the same data yields a crossing angle of

149 ± 18 µrad in IP1 and 141 ± 18 µrad in IP5. This puts

this method in good agreement with both the actual data and

comparable methods.

PREDICTING THE TUNE SHIFT

Since k-modulation forces the beam onto a new closed

orbit, the beam will no longer pass through the centres of

the sextupoles in the machine. This causes the beam to

experience an additional quadrupole field with strength k1 =

k2xs , where k2 is the sextupole strength and xs is the offset

in the sextupole. This additional quadrupole effect gives rise

to a tune shift given by

∆Qx,y = ±
βSx,yk2Lsxs

4π
(11)

where βs is the beta function in the sextupole and can be

taken from the model and Ls is the length of the sextupole [9].

In the vertical plane the equation is the same but negative.

Using the offset analysis method described in the previous

section and Eq. 10 one can estimate xs and hence work out

the new closed orbit at any point using Eq. 3 and 4 for every

∆k. This can give xs in all sextupoles and one can sum up all

the contributions to the change of tune described by Eq. 11

to estimate the total parasitic tune change.

CONCLUSION AND OUTLOOK

The impact of the parasitic tune change changes on k-

modulation have been outlined for the extreme example of

vdM optics. A method was developed that uses SVD to

analyse orbit data and estimate the offset of the modulated

quadrupole. A method of how this offset estimate can be

used to evaluate the parasitic tune change has been discussed

and can be implemented and tested in the near future.
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