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Abstract
Optimization of transfer line optics is essential for deliv-

ering high quality beams to the experimental areas. This
type of optimization is usually done by hand and relies on
the experience of operators. The nature of this task is repeti-
tive though highly complex. Besides optimizing the beam
quality at the experiments this task is often accompanied by
secondary objectives or requirements such as keeping the
beam losses below an acceptable threshold. In the past years
Deep Learning algorithms have experienced a rapid develop-
ment and gave rise to various advanced software implementa-
tions which allow for straightforward usage of corresponding
techniques, such as automatic differentiation and gradient
backpropagation. We investigate the applicability and perfor-
mance of these techniques in the field of transfer line optics
optimization, specifically for the HADES beamline at GSI,
in form of gradient-based differentiable simulators. We test
our setup on results obtained from MADX simulations and
compare our findings to different gradient-free optimization
methods. Successfully employing such methods relieves
operators from the tedious optimization tasks.

INTRODUCTION
HADES beam line is one of the high-energy transfer lines

linking SIS18 synchrotron with experimental areas. This
beamline is about 160 meters long and contains 21 main
quadrupoles and 2 active dipoles. Most of the beamline
is straight while the two 7 degree dipoles towards the end
of the line are used to guide the beam to the experiment.
HADES experiment is very demanding concerning beam
stability and minimization of beam losses. For that purpose
it operates an additional beam quality monitoring system [1]
which includes a start detector right in front of the target and
a veto detector which is located 7 m downstream of the target.
The veto detector is used to verify that the beam doesn’t hit
the vacuum chamber in front of the beam dump which would
create additional background on the detectors. For a detailed
description of the beamline please consider [2].

DIFFERENTIABLE SIMULATOR
The extensive and rapid development of machine learn-

ing and specifically deep learning algorithms during the
past years gave rise to various advanced software packages
implementing required techniques such as automatic differ-
entiation [3] and gradient backpropagation [4]. This opens
the possibility for implementing simulations with tractable,
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analytically exact gradients with respect to simulation pa-
rameters and hence providing a natural optimization setting.
The usage of such differentiable simulators has become a
recent research interest in various areas of science [5–9].

Typically simulations, and particle tracking in particular,
involve a sequence of well-defined, elementary operations
that are applied in order to transform some initial state. This
eventually leads to the desired output, denoted as final state,
while intermediate states are typically discarded. By track-
ing all the involved operations and arranging them into a
graph-like structure, where edges represent the data at the
various stages of computation and nodes represent opera-
tions on these states, one can trace back how the final state,
as well as any intermediate state, emerged from the preced-
ing operations and their parameters. In case all involved
operations are differentiable as well, one can compute the
gradient of any of the states with respect to the preceding
operations’ parameters using the chain rule in form of the
backpropagation algorithm [4]. In the scope of simulations
the operations hereby represent the simulated system and
are parametrized accordingly. Computing the gradient of
user-defined metrics, e.g. the mean-squared error deviation
between a simulated and measured final state, with respect
to the model’s parameters allows for finding gradient-based
parameter updates that minimize the particular metric. Keep-
ing track of the involved operations as well as performing
the backpropagation of associated gradients is a tedious and
complex task however various deep learning software pack-
ages, such as Tensorflow [10] or PyTorch [11], implement
this functionality in a general way (typically used for updat-
ing the parameters of neural networks in order to minimize
the deviation of predicted and expected output).

The MADX simulation tool for example can be used to
perform particle tracking in accelerators in order to com-
pute various quantities of interest, such as losses along
a beamline and beam sizes at target locations. Gradient-
free optimization procedures can use these results in order
to update their recommendations about optimal parameter
settings. These simulations can also be combined with
gradient-approximating procedures (numerical differenti-
ation) however estimating the gradients requires multiple
forward passes of the data through the simulator and the gra-
dient estimation can be susceptible to limited statistics in the
data. The phase-space evolution in particle tracking along a
beamline (or accelerator lattice in general) is given by a well-
defined sequence of operations, given by the solutions to
Hamilton equations, for example in form of transfer matrices
and corresponding matrix products. These operations en-
code the various parameters of the accelerator and since they
are differentiable they are suitable for usage in an automatic
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differentiation setting, coded in one of the aforementioned
software packages. This allows for tracing back the simu-
lation results to the parameters of interest, e.g. quadrupole
gradient strengths, and to compute the corresponding ana-
lytically exact gradients for minimizing user-defined target
metrics, e.g. losses along beamline or beam spot size at
experiments.

OPTIMIZING SPOT SIZE AT TARGET
We implemented particle tracking in form of six-

dimensional thick lens tracking by considering linear op-
tics, as a sequence of differentiable matrix products using
the PyTorch package [11]. The gradient strengths of the
21 quadrupoles along the beamline were varied and opti-
mized in order to reach the following goals: minimize beam
loss along beamline, minimize beam size at start detector
and keep beam size below threshold at veto detector. The
corresponding metrics were realized as follows. The loss
value per particle at each lattice element is computed as
λ = x2/a2

x + y
2/a2

y if λ ≥ 1 and 0 otherwise, where (ax,ay)
is the aperture of the element. This loss value is not bounded
from above and hence lacks a direct physical interpretation
but since the objective of minimizing this loss value coin-
cides with particles staying within the aperture it serves the
purpose. Actually it has the desirable effect that for greater
loss values the corresponding injected gradient will be larger
as well and hence allows for faster convergence. We note that
the aforementioned definition by cases of λ is not differen-
tiable around λ = 1 w.r.t. particle position (x, y) however the
implementation actually only considers particles for which
λ ≥ 1 (i.e. not injecting a gradient for particles with λ < 1).
Particles that are lost at an element, i.e. particles for which
λ ≥ 1, are excluded from further tracking and do not con-
tribute to metrics’ values at subsequent elements. Beam
sizes at target and veto detector are computed as standard
deviations of the spatial distributions of particles that were
not lost before.

The present version of the algorithm targets the beam
spot size at the relevant locations directly and hence doesn’t
require an explicit notion of optics functions such as beta
functions or dispersion in order to achieve this goal. Never-
theless if during operation the dispersion at target is desired
to be specifically small for higher beam stability, this can
be included by minimizing the correlation between parti-
cle momentum and position at the dispersion-free locations
(though not directly optimized for in the present study).

We further like to point out that for the present study we
have considered optimization via particle tracking but the
same principle of differentiable simulations can be used in
conjunction with optics functions directly, by propagating
these functions according to the lattice parameters along
the beamline using appropriate transfer matrices, and then
optimizing for the desired values in a similar manner. Either
way computes the specified metrics as well as their depen-
dence on the relevant lattice parameters and hence allows
for minimization by computing the corresponding gradients.

A common concern with gradient descent algorithms is
that they do not necessarily converge to a global minimum
but might as well converge to a local minimum instead. How-
ever during the past years various countermeasures such as
varying starting points and cyclic learning rate schedules
have proven successful in the scope of deep learning [12,13],
the former of which can be trivially parallelized, i.e. not
adding a constraint on compute time.

For the present study we used Adam optimizer [14] with
learning rates varying between 1 × 10−3 and 1 × 10−5. The
individual metrics were weighted with factors ranging from
0.5 to 2.0 and then added up to yield the overall optimization
target (metric). Several restarts with different learning rates
and weight factors have been performed. The results of
the optimization procedure are summarized in Table 1 and
shown in Figures 1, 2. We have only considered solutions
that do not require a change in polarity of the quadrupole
magnets.

Table 1: Results of the Optimization Using Differentiable
Simulator (DS) Compared to Two Gradient-Free Optimizers,
Evolutionary Algorithm (EA) and Particle Swarm Optimizer
(PSO) (Units In Meter Except Where Otherwise Indicated)

Loss Target Veto
(%) βx βy Dx Dy βx βy

DS 0.30 0.25 0.23 −0.02 −0.10 200 209
EA 0.27 0.36 0.30 0.31 −0.11 180 174
PSO 0.05 0.25 0.23 0.44 0.02 198 210

Figure 1: Comparison of resulting normalized quadrupole
gradients for the different optimization methods.

Comparison with Gradient-Free Optimizers
Gradient-free optimization procedures such as evolution-

ary algorithms and particle swarm optimization offer an
alternative and flexible solution for complex optimization
problems by effectively combining exploration and exploita-
tion of the relevant parameter space through nature-inspired
processes [15, 16]. Here we compare the final optics as
computed by the Differentiable Simulator (DS) with two
gradient-free optimizers, namely the (1+1) evolutionary al-
gorithm [17] using fast mutation rates [18] (EA) and par-
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Figure 2: Comparison of resulting beta functions for the
different optimization methods.

ticle swarm optimization (PSO), both implemented in the
nevergrad software package [19]. These methods were con-
figured to optimize directly for optics functions using the
following target values: loss ≤ 0.5 %, βx,target ≤ 0.12 m,
βy,target ≤ 0.06 m, Dx,target ≤ 0.1 m, Dy,target ≤ 0.1 m,
βx,veto ≤ 90 m, βy,veto ≤ 45 m. Scaling factors for the indi-
vidual metrics have been varied between 1.0 and 2.0 and the
best result was considered. The overall metric is computed
as the sum of individual metrics scaled with the respective
factors. Figure 1 shows the resulting quadrupole gradients,
Fig. 2 shows the resulting beta functions and Table 1 gives
an overview of the results. We note that the application of
other gradient-free optimization methods to a similar task
has been further explored in [20].

INFERENCE OF MODEL ERRORS
An important advantage of the differentiable simulator

is its versatility with respect to the involved parameters as
well as the considered metrics. This allows for using the
same method of differentiable particle tracking for inferring
model errors, such as errors in quadrupole gradients, by
using the trajectory response matrix (TRM) as the target
metric. This matrix is created from observing the orbit
response of the beam to changes in steerer magnets. Here
we optimized for model errors by minimizing the squared
difference between measured and simulated response matrix.
We considered quadrupole gradient errors as well as screen
calibration errors of up to 5%. Since the beam is extracted
off-center the quadrupole gradient errors affect the resulting
trajectory. The response matrix consists of 11 kickers and 2
dipoles used for steering the beam and 7 screens and grids,
making a total of 30 effective pairs (i.e. having at least one
quadrupole between them). The algorithm optimized for

the 21 gradient errors as well as the 7 screen calibration
errors in order to match the simulated and measured TRM.
For the present study a test setup using MADX simulation
representing the measurements was used in order to assess
the effectiveness of the method. For that purpose a dedicated
software package for interfacing MADX from Python has
been created [21]. We found that the algorithm manages to
successfully restore the actual orbit by inferring the relevant
errors as shown in Fig. 3.

Figure 3: Design orbit without gradient errors, actual orbit
resulting from errors and orbit inferred by the differentiable
simulator.

CONCLUSION & OUTLOOK
We have created a novel implementation of particle track-

ing which is based on the paradigms of dataflow and differen-
tiable programming by leveraging corresponding techniques
from existing deep learning software packages. Simulation
results emerge as traceable quantities and hence allow for
differentiation with respect to simulation parameters. This
provides a natural setting for gradient-based optimization of
model parameters which we have demonstrated at the exam-
ple of beamline optics optimization by tuning quadrupole
gradient strengths in order to fulfill multiple objectives such
as minimizing beam loss and beam spot size at target loca-
tions. The method is versatile with respect to the included
parameters as well as the final simulation metrics which we
have shown by taking the example of quadrupole gradient
error inference by considering trajectory response matrix
deviation. For the present study we have considered parti-
cle tracking with linear optics in the scope of transfer lines.
However the method is not limited to any of these specifi-
cations and it can be translated for usage with non-linear
optics, evolution of optics functions or application to circu-
lar accelerators, each of which we plan to investigate in the
future. Another advantage of the presented method is the
option to be run on GPU or TPU hardware without much
overhead from the user’s perspective, allowing for a potential
performance increase through massive parallelization.
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