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Abstract
Magnetic imperfections of the HL-LHC inner triplet are

expected to generate a significant 𝛽-beating. For that reason,
improved local optics correction techniques at the low-𝛽 in-
sertions is essential to ensure a high luminosity performance
in the HL-LHC. In this study, we compare different strate-
gies for local optics correction at the Interaction Regions
with respect to their final performance in terms of residual
𝛽-beating. Supervised learning techniques are also explored
to predict the inner triplet magnetic error contributions.

INTRODUCTION
The performance of the future upgrade of the LHC, the

so called HL-LHC, relies on high-gradient Inner Triplet
(IT) quadrupoles located close to the different interaction
points (IPs). The accurate beam-based correction of lattice
imperfections relating to these quadrupoles in the Interaction
Regions (IRs) is therefore fundamental [1, 2].

In this paper we summarize the progress made using dif-
ferent techniques related to local correction optics. First, we
describe the sorting and pairing strategies to minimize the
impact of magnetic errors in the IT magnets. Second, we
describe a technique based on supervised learning to predict
quadrupole errors in all quadrupoles of the HL-LHC. Then,
we briefly show the progress made on the application, for the
first time, of the Action-Phase jump correction technique [3]
applied to the HL-LHC lattice. Finally, we explore the con-
cept of Reinforcement Learning in the context of local optics
correction.

INNER TRIPLET QUADRUPOLE SORTING
The inner triplet is composed of three quadrupoles per IP

side, see Fig. 1. Each of these quadrupoles is split in two
different parts. A strategy to partially mitigate the impact
of magnetic imperfections in the inner triplet is to power in
pairs the two units of each triplet magnet. In addition, the
different units of Q2 (Q2A and Q2B) are sorted in such a
way that the total error introduced is minimised.

In general, the error associated to the quadrupole gradient
can be decomposed into three main contributions: an error
associated with the magnetic gradient itself and two errors
associated with the magnetic measurements, the random and
the systematic errors.

Although the random errors can be estimated through ded-
icated measurements, the determination of the systematic
component remains more challenging. We will see later
∗ hector.garcia.morales@cern.ch

Figure 1: Sketch of the inner triplet region.

that this component can be predicted by applying supervised
learning techniques to optics measurements around the ring.
The corresponding errors introduced in simulations in the
inner triplet quadrupoles are summarized in Table 1. The
gradient and measurement errors follow a Gaussian distribu-
tion cut at 3𝜎 while the systematic errors follow a uniform
distribution.

Table 1: Errors (in [10−4] Units) and A/B Units Sorting and
Pairing Possibilities of the Inner Triplet Magnets

Magnet Grad. Meas. Syst. Sorting Pairing

Q1/Q3 50 2 10 No Yes
Q2 50 2 10 Yes Yes

SUPERVISED LEARNING FOR
QUADRUPOLE ERROR PREDICTION
The magnetic errors on the triplet quadrupoles are one

of the main sources of 𝛽-beating not only in the IRs but
also around the whole ring. Being able to determine the
magnetic error is important to perform a better correction.
In a similar way that was done in the LHC [4, 5], we have
trained a regression model to predict the magnetic error of
all ring quadrupoles including the error of the inner triplet
quadrupoles.

Data Generation
In order to generate the data required to train the model,

80000 different machines have been simulated using MADX,
each following a random distribution of the magnetic errors
in the quadrupoles following the values shown in Table 1.
From each of the seeds the corresponding values of the
quadrupoles errors have been recorded and introduced as tar-
get values as well as the values of the 𝛽-functions at BPMs
closest to the different IP, the phase advance difference from
the ideal model all around the ring and the normalized disper-
sion which are used as features to train the regression model.
This is a simplified model and no noise corresponding to the
actual measurement data was included.
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Regression Model
The supervised learning has been carried out on a Ridge

linear model as regression method. Other algorithms have
been explored, such like Random Forest, but the resulting
performance did not surpass the performance of simpler
models in addition to a significant increase of required train-
ing time. Hyperparameters have been optimized using a grid
scan and we used cross-validation to ensure that the model
is robust enough to make accurate enough prediction on the
test set. The final scores of the trained model on the training
set and the test set are shown in Table 2. These results are
quite good although there is still room for improvement.

Table 2: Score and Mean Absolute Error (MAE) of the Train
and Test Sets

Set 𝑅2 score MAE [10−6m−1]

Train 0.89 3.3
Test 0.85 3.8

Quadrupole Error Prediction
The trained model has been used to predict the magnetic

errors of the HL-LHC lattice v1.3 with 𝛽∗ = 30 cm. As a
particular case to evaluate the predictive power of the trained
model. We can take the particular case of the prediction of
the relative magnetic errors in the inner triplet magnets. In
Fig. 2, the error in the prediction of the magnetic error of Q2
is shown as a function of the actual magnetic error. In this
case, the mean absolute error (MAE) between the predicted
value and the true value is around 2.9×10−4 while the initial
distribution is centered around 7 × 10−4, showing that this
technique improves by more than a factor 2 the quadrupolar
strength uncertainty.
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Figure 2: Density plot of the difference between IT
quadrupole magnet error predicted from model and true
relative error as a function of the true relative error for dif-
ferent Q2 quadrupoles.

Systematic Error Prediction
The systematic component of the magnetic error is un-

known. At the same time, this component represents a signif-
icant fraction of the total error and hence, it has a significant
influence on the resulting 𝛽-beating. Therefore, being able
to use the regression model to predict the value of the sys-
tematic error would help with the posterior correction. As-
suming that all magnets of the same type (i.e. the quadrupole
magnets of the inner triplet) have the same systematic error
component, we can estimate its value by averaging the total
magnetic error, (Δ𝐾/𝐾)syst ∼ ⟨Δ𝐾/𝐾⟩. We have shown
that we are able to predict the total magnetic error. There-
fore, it is easy to extract the systematic part. In Fig. 3 the
systematic error reconstructed from the predictive model and
the actual systematic error for the IT quadrupoles are com-
pared. We can see that, as expected, since the quadrupole
error prediction is accurate enough, the regression model is
able to accurately predict the systematic component with a
MAE of 0.15 ⋅ 10−4. In such a way, a first iteration of the
optics correction could focus on the systematic component
leaving the random components to the second iteration.
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Figure 3: Histogram comparing the systematic error in the
IT predicted from the model and the true value.

ACTION-PHASE JUMP
The Action-Phase Jump (APJ) technique for optics correc-

tion has shown a comparable or even superior performance
to classical Segment-by-Segment (SbS) technique for cor-
recting local optics in the IRs. These results obtained in
the LHC make of APJ a promising technique also for the
optics correction of the future HL-LHC. Following the same
simulation principles described in [6], APJ has been used to
correct the local optics in IR1 for the HL-LHC optics v1.3
with 𝛽∗ = 30 cm. In Figs. 4 and 5 the residual 𝛽-beating
after correction is shown for the full ring and the IR1 region
respectively. In Table 3 the numerical results of the correc-
tion are shown. The residual 𝛽-beating around the ring is in
all cases below 2% with the maximum never reaching above
2.5%.
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Figure 4: Residual 𝛽-beating around the ring for B1 after
applying APJ correction.
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Figure 5: Residual 𝛽-beating in IR1 for B1 after applying
APJ correction.

Table 3: Results of the Correction Using APJ Technique

RMS(Δ𝛽/𝛽𝑥/𝑦) Max(Δ𝛽/𝛽𝑥/𝑦)
[%] [%]

B1 1.2/0.95 1.7/1.3
B2 1.2/1.7 1.6/2.4

In the future, the plan is to run simulations using nominal
collision optics with 𝛽∗ = 15 cm.

REINFORCEMENT LEARNING FOR
OPTICS CORRECTION

A different approach based on RL techniques has also
been considered. Recent advances in RL applications in
accelerators operation have been studied [7]. The idea is to
train an agent that will perform a series of actions that tries
to correct linear optics in the IRs. The reward is based on
the rms beta-beating obtained after each agent’s action as it
is shown in the algorithm layout in Fig 6.

Surrogate LHC Model as Environment
The LHC model represents the environment where the

agent carries out its actions and the one that delivers the
reward as a response to the agent’s actions. A surrogate

Δ𝐾/𝐾 LHC Δ𝛽/𝛽

agent Reward and State

Action

Figure 6: Scheme of the Reinforcement Learning algorithm
for optics correction.

model has been trained with the aim to reduce the CPU time
that otherwise would be required if running MADX at each
iteration of the training. The training of the surrogate model
profits from the data already generated for the prediction
of magnetic error in quadrupoles. In this case, however,
inputs and outputs are swapped. The idea is that, in this case,
each machine configuration (given by a set of quadrupole
errors) leads to a particular set of 𝛽-beating values. After
the training of the Ridge model, the scores obtained are 0.95
for both the train and test data sets. The MAE obtained in
the prediction of the value of 𝛽-function in the whole ring
is of 9.6 meters. Therefore, we conclude that this surrogate
model might be used as a reliable enough environment in
the RL algorithm.

Agent, Policy and Reward
The reward is based on the value of the 𝛽-beating com-

puted after each agent’s action. If the action tends to re-
duce the 𝛽-beating then the reward is positive while if the
𝛽-beating is increased after the action the reward is neg-
ative. The agent is expected to be a simple feed-forward
neural network that performs the different actions based on
quadrupole corrector following a given policy 𝜋 which will
be determined using Q-learning.

CONCLUSIONS AND FUTURE
PROSPECTS

Different techniques for local optics corrections in the
LHC IRs have been considered. A regression model has
been trained in order to successfully predict quadrupole mag-
netic errors using 𝛽-function and phase advance as features
achieving an 𝑅2 score of 0.85 in the test sample. From the
same analysis, we have demonstrated that the systematic
error component can be estimated from the predicted errors.
Action-Phase Jump techniques show promising results on
the correction of the local optics in IR1. These results will
be compared to SbS techniques.

The first steps towards a reinforcement learning model
for optics correction have been carried out. A HL-LHC
surrogate model has been created and the first ideas for the
policy of the agent have been explored.
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