ANALYTICAL DESCRIPTION OF THE STEERER PARAMETERS IN THE BILINEAR-EXPONENTIAL MODEL AT DELTA

S. Kötter*, Center for Synchrotron Radiation (DELTA), TU Dortmund, 44227 Dortmund, Germany

Abstract

At DELTA, a 1.5 GeV synchrotron radiation source operated by the TU Dortmund University, an analytical description of the steerer parameters in the bilinear-exponential (BE) model has been developed. The BE model describes the coupled orbit response in a storage ring. It is used in the closed-orbit bilinear-exponential analysis (COBEA) algorithm to decompose orbit response matrices into beta function, betatron phase, and a scaled dispersion. After introducing the BE model and the analytical steerer parameters, a simulation-based comparison of the BE model and another coupled orbit response model is presented.

INTRODUCTION

The bilinear-exponential (BE) model describes the orbit response in a storage ring in the approximation of coupled linear beam dynamics [1]. It is used in the closed-orbit bilinear-exponential analysis (COBEA) algorithm to decompose a measured orbit response matrix into beta function, betatron phase and a scaled dispersion at all beam position monitors (BPMs) [2,3]. A variation of the COBEA algorithm has also been investigated to extract optical functions from orbit corrections [4].

In the absence of transverse coupling and approximated for thin steerer magnets, the BE model reduces to the most widely known orbit response model without dispersion [1]

$$
\begin{equation*}
r_{j k}=\frac{\sqrt{\beta_{j} \beta_{k}}}{2 \sin (\pi q)} \cos \left(\left|\psi_{j}-\psi_{k}\right|-\pi q\right) \tag{1}
\end{equation*}
$$

Here, β is the beta function, ψ the betatron phase, s the longitudinal position, q the tune and θ the steerer strength. BPMs are indexed with j. Steerer magnets are indexed with k.

The addition of an analytical description of the steerer parameters makes the BE model a generalization of Eq. (1) for coupled storage rings. The steerer parameters and their simulation-based validation is presented in the following.

THE BE MODEL

According to the BE model [1], the orbit response in a storage ring without dispersion

$$
\begin{equation*}
r_{w j k}^{\mathrm{BE}}=\theta_{k} \sum_{m=0}^{M-1} \Re\left\{Z_{m w j} A_{m k}^{*} e^{-i \pi q_{m} S_{j k}}\right\} \tag{2}
\end{equation*}
$$

is determined by $M=2$ modes of betatron motion. The plane index w refers to either the horizontal or the vertical plane. The separation of the indices m and w incorporates

[^0]

Figure 1: Beta function values $\beta_{m w j}$ of coupled betatron oscillations at $\mathrm{BPM} j[4]$. The index w references the horizontal $(w=0)$ or vertical plane $(w=1)$. In this example, the first mode ($m=0$) is mostly horizontal whereas the second mode $(m=1)$ is mostly vertical.
coupled betatron oscillations in the sense of the Mais-Ripken parametrization into the model [5]. These are not confined to a single plane. For this reason, the phasor

$$
Z_{m w j}=\sqrt{\beta_{m w j}} e^{i \psi_{m w j}}
$$

is indexed with both m and w. It encodes the amplitude and phase of the betatron oscillation of the m-th mode where $\beta_{m w j}$ is the projection of the beta function into the w-th plane at BPM j (Fig. 1) and $\psi_{m w j}$ is the corresponding betatron phase.

The remaining model parameters are the tune of the m-th mode q_{m}, the factor $S_{j k}$, which is either -1 if the k-th steerer magnet is downstream of the j-th BPM or 1 otherwise, and the steerer parameters $A_{m k}$.

Steerer Parameters

The 4D closed orbit $\vec{r}\left(s_{k}\right)$ at a thin steerer magnet applying a kick $\vec{\theta}_{k}$ holds

$$
\begin{equation*}
\vec{r}\left(s_{k}\right)-T_{k k} \vec{r}\left(s_{k}\right)=\vec{\theta}_{k} \tag{3}
\end{equation*}
$$

where the one turn-transfer map $T_{k k}$ propagates the phase space vector at the steerer magnet to the next turn. The closed orbit according to the BE model is a scaled betatron oscillation represented by [1]

$$
\vec{r}\left(s_{k}\right)=\sum_{m} \Re\left\{\tilde{A}_{m k}\left(\begin{array}{c}
Z_{m 0 k} \\
Z_{m 0 k}^{\prime} \\
Z_{m 1 k}^{\prime} \\
Z_{m 1 k}^{\prime}
\end{array}\right)\right\}
$$

In this ansatz, the steerer parameters take the role of complex scaling factors. They select the correct amplitudes and
phases for the two modes of the betatron oscillation which is closed by the kick and therefore becomes the new closed orbit. The transition of the beam to the new closed orbit begins when the beam experiences the kick for the first time. The old orbit then becomes a betatron oscillation trajectory and the beam oscillates transversely until synchrotron radiation damping sets it on the new closed orbit.

Inserting the closed-orbit ansatz into the previous condition and absorbing half of the phase advance applied by the one-turn transfer map into the steerer parameters

$$
A_{m k}=e^{i \pi q_{m}} \tilde{A}_{m k}
$$

yields an equation system

$$
-2 i \sum_{m} \Re\left\{A_{m k}\left(\begin{array}{c}
Z_{m 0 k} \\
Z_{m 0 k}^{\prime} \\
Z_{m 1 k}^{\prime} \\
Z_{m 1 k}^{\prime}
\end{array}\right)\right\} \sin \left(\pi q_{m}\right)=\left(\begin{array}{c}
0 \\
\theta_{0 k} \\
0 \\
\theta_{1 k}
\end{array}\right)
$$

for the steerer parameters. Note, that inserting the BE model from Eq. (2) directly into Eq. (3) gives the same result. The equation system is solved by [6]

$$
\begin{equation*}
A_{m k}=\frac{\sum_{w} \theta_{w k} \operatorname{det}\left(M_{m w k}\right)}{4 i \sin \left(\pi q_{m}\right)} \tag{4}
\end{equation*}
$$

with the matrices

$$
\begin{aligned}
& M_{11 k}=\left(\begin{array}{lll}
Z_{11 k}^{*} & Z_{21 k} & Z_{21 k}^{*} \\
Z_{12 k}^{*} & Z_{22 k} & Z_{2, k}^{*} \\
Z_{12 k}^{* *} & Z_{22 k}^{\prime} & Z_{22 k}^{* *}
\end{array}\right) \\
& M_{12 k}=\left(\begin{array}{lll}
Z_{11 k}^{*} & Z_{21 k} & Z_{21 k}^{*} \\
Z_{11 k}^{\prime \prime} & Z_{21 k}^{\prime} & Z_{21 k}^{*} \\
Z_{12 k}^{*} & Z_{22 k} & Z_{22 k}^{*}
\end{array}\right) \\
& M_{21 k}=\left(\begin{array}{lll}
Z_{11 k} & Z_{11 k}^{*} & Z_{21 k}^{*} \\
Z_{12 k}^{*} & Z_{12 k}^{*} & Z_{22 k}^{*} \\
Z_{12 k}^{\prime} & Z_{12 k}^{\prime *} & Z_{22 k}^{*}
\end{array}\right) \\
& M_{22 k}=\left(\begin{array}{lll}
Z_{11 k} & Z_{11 k}^{*} & Z_{21 k}^{*} \\
Z_{11 k}^{\prime} & Z_{11 k}^{\prime *} & Z_{21 k}^{\prime \prime} \\
Z_{12 k} & Z_{12 k}^{*} & Z_{22 k}^{*}
\end{array}\right)
\end{aligned}
$$

encoding the betatron motion at the position of the steerer magnet.

ORBIT RESPONSE FROM TRANSFER MAPS

The orbit response in a transversly coupled storage ring can also be calculated from transfer maps instead of optical functions [7]. Solving equation Eq. (3) for the orbit displacement at the steerer magnet gives the orbit response

$$
\vec{r}\left(s_{k}\right)=\left(1-T_{k k}\right)^{-1} \vec{\theta}_{k}
$$

at the steerer magnet. It can be propagated through the storage ring using matrix optics to determine the orbit reponse at each BPM

$$
\begin{equation*}
\vec{r}_{j k}^{\mathrm{TM}}=\frac{T_{k j}}{1-T_{k k}} \vec{\theta}_{k} . \tag{5}
\end{equation*}
$$

MOPAB226

Figure 2: Response matrix errors for a range of quadrupole skew angles.
determine the orbit response of a thin steerer magnet from beta function and betatron phase (and their derivatives) in the Mais-Ripken parametrization.

ACKNOWLEDGEMENTS

The author thanks his working group for its support and B. Riemann (PSI) for his comments regarding the BE model and COBEA. Also, the author expresses his gratitude towards the scientists and technicians who maintain and operate the storage ring at DELTA.

REFERENCES

[1] B Riemann, "The Bilinear-Exponential Closed-Orbit Model and its Application to Storage Ring Beam Diagnostics", Ph.D. thesis, TU Dortmund University, Dortmund, Germany, 2016.
[2] B. Riemann, S. Kötter, S. Khan, and T. Weis, "COBEA - Optical Parameters from Response Matrices without Knowledge of Magnet Strengths", in Proc. 8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, Denmark, 2017, pp. 676-679. doi:10.18429/JACoW-IPAC2017-MOPIK066
[3] B. Riemann, S. Kötter, B.D. Isbarn, S. Khan, and T. Weis, "Validating the COBEA Algorithm at the DELTA Storage Ring", in Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, Canada, 2018, pp. 4851-4854. doi:10.18429/ JACoW-IPAC2018-THPML084
[4] S. Kötter and T. Weis, "Towards an Adaptive Orbit-ResponseMatrix Model for Twiss-Parameter Diagnostics and Orbit Correction at DELTA", in Proc. 8th Int. Beam Instrumentation Conf. (IBIC'19), Malmö, Sweden, 2019, pp. 485-489. doi:10.18429/JACoW-IBIC2019-WEC002
[5] V. A. Lebedev and S. A. Bogacz, "Betatron motion with coupling of horizontal and vertical degrees of freedom", J. Instrum., vol. 5, no. 10, pp. P10010-P10010, Oct. 2010. doi: 10.1088/1748-0221/5/10/p10010
[6] S. Kötter, unpublished dissertation.
[7] M. Beckmann and V. Ziemann, "How well do we now the circumference of a storage ring?", Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 771, pp. 115-120, 2015. doi:10.1016/j.nima.2014.10.044
[8] W. J. Corbett, M. J. Lee, and V. Ziemann, "A Fast ModelCalibration Procedure for Storage Rings", in Proc. 15th Particle Accelerator Conf. (PAC'93), Washington D.C., USA, 1993, pp. 108-111. doi:10.1109/pac.1993.308999
[9] W. J. Corbett, D. Robin, J. Safranek, and V. Ziemann, "Debugging Real Accelerators", Part. Accel., vol. 58, pp. 193-200, 1997.
[10] D. Schirmer, private communication, TU Dortmund University (DELTA), 2020.
[11] F. Schmidt, "MAD-X PTC Integration", in Proc. 21st Particle Accelerator Conf. (PAC'05), Knoxville, TN, USA, 2005, paper MPPE012.

[^0]: * stephan.koetter@tu-dortmund.de

