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Abstract
At DELTA, a 1.5 GeV synchrotron radiation source oper-

ated by the TU Dortmund University, an analytical descrip-
tion of the steerer parameters in the bilinear-exponential
(BE) model has been developed. The BE model describes
the coupled orbit response in a storage ring. It is used in
the closed-orbit bilinear-exponential analysis (COBEA) al-
gorithm to decompose orbit response matrices into beta
function, betatron phase, and a scaled dispersion. After
introducing the BE model and the analytical steerer parame-
ters, a simulation-based comparison of the BE model and
another coupled orbit response model is presented.

INTRODUCTION
The bilinear-exponential (BE) model describes the orbit

response in a storage ring in the approximation of coupled
linear beam dynamics [1]. It is used in the closed-orbit
bilinear-exponential analysis (COBEA) algorithm to decom-
pose a measured orbit response matrix into beta function,
betatron phase and a scaled dispersion at all beam position
monitors (BPMs) [2, 3]. A variation of the COBEA algo-
rithm has also been investigated to extract optical functions
from orbit corrections [4].

In the absence of transverse coupling and approximated
for thin steerer magnets, the BE model reduces to the most
widely known orbit response model without dispersion [1]

𝑟𝑗𝑘 =
√𝛽𝑗𝛽𝑘

2 sin(𝜋𝑞) cos (|𝜓𝑗 − 𝜓𝑘| − 𝜋𝑞) . (1)

Here, 𝛽 is the beta function, 𝜓 the betatron phase, 𝑠 the
longitudinal position, 𝑞 the tune and 𝜃 the steerer strength.
BPMs are indexed with 𝑗. Steerer magnets are indexed with
𝑘.

The addition of an analytical description of the steerer
parameters makes the BE model a generalization of Eq. (1)
for coupled storage rings. The steerer parameters and their
simulation-based validation is presented in the following.

THE BE MODEL
According to the BE model [1], the orbit response in a

storage ring without dispersion

𝑟BE
𝑤𝑗𝑘 = 𝜃𝑘

𝑀−1
∑
𝑚=0

ℜ {𝑍𝑚𝑤𝑗𝐴∗
𝑚𝑘𝑒−𝑖𝜋𝑞𝑚𝑆𝑗𝑘} (2)

is determined by 𝑀 = 2 modes of betatron motion. The
plane index 𝑤 refers to either the horizontal or the vertical
plane. The separation of the indices 𝑚 and 𝑤 incorporates
∗ stephan.koetter@tu-dortmund.de

Figure 1: Beta function values 𝛽𝑚𝑤𝑗 of coupled betatron
oscillations at BPM 𝑗 [4]. The index 𝑤 references the hori-
zontal (𝑤 = 0) or vertical plane (𝑤 = 1). In this example,
the first mode (𝑚 = 0) is mostly horizontal whereas the
second mode (𝑚 = 1) is mostly vertical.

coupled betatron oscillations in the sense of the Mais-Ripken
parametrization into the model [5]. These are not confined
to a single plane. For this reason, the phasor

𝑍𝑚𝑤𝑗 = √𝛽𝑚𝑤𝑗𝑒
𝑖𝜓𝑚𝑤𝑗

is indexed with both 𝑚 and 𝑤. It encodes the amplitude and
phase of the betatron oscillation of the 𝑚-th mode where
𝛽𝑚𝑤𝑗 is the projection of the beta function into the 𝑤-th plane
at BPM 𝑗 (Fig. 1) and 𝜓𝑚𝑤𝑗 is the corresponding betatron
phase.

The remaining model parameters are the tune of the 𝑚-th
mode 𝑞𝑚, the factor 𝑆𝑗𝑘, which is either −1 if the 𝑘-th steerer
magnet is downstream of the 𝑗-th BPM or 1 otherwise, and
the steerer parameters 𝐴𝑚𝑘.

Steerer Parameters
The 4D closed orbit ⃗𝑟(𝑠𝑘) at a thin steerer magnet applying

a kick ⃗𝜃𝑘 holds

⃗𝑟(𝑠𝑘) − 𝑇𝑘𝑘 ⃗𝑟(𝑠𝑘) = ⃗𝜃𝑘 (3)

where the one turn-transfer map 𝑇𝑘𝑘 propagates the phase
space vector at the steerer magnet to the next turn. The
closed orbit according to the BE model is a scaled betatron
oscillation represented by [1]

⃗𝑟(𝑠𝑘) = ∑
𝑚

ℜ

⎧{{
⎨{{⎩

̃𝐴𝑚𝑘

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑍𝑚0𝑘
𝑍′

𝑚0𝑘
𝑍𝑚1𝑘
𝑍′

𝑚1𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

⎫}}
⎬}}⎭

.

In this ansatz, the steerer parameters take the role of com-
plex scaling factors. They select the correct amplitudes and
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phases for the two modes of the betatron oscillation which is
closed by the kick and therefore becomes the new closed or-
bit. The transition of the beam to the new closed orbit begins
when the beam experiences the kick for the first time. The
old orbit then becomes a betatron oscillation trajectory and
the beam oscillates transversely until synchrotron radiation
damping sets it on the new closed orbit.

Inserting the closed-orbit ansatz into the previous condi-
tion and absorbing half of the phase advance applied by the
one-turn transfer map into the steerer parameters

𝐴𝑚𝑘 = 𝑒𝑖𝜋𝑞𝑚 ̃𝐴𝑚𝑘

yields an equation system

−2𝑖 ∑
𝑚

ℜ

⎧{{
⎨{{⎩

𝐴𝑚𝑘

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑍𝑚0𝑘
𝑍′

𝑚0𝑘
𝑍𝑚1𝑘
𝑍′

𝑚1𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

⎫}}
⎬}}⎭

sin (𝜋𝑞𝑚) =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
𝜃0𝑘
0

𝜃1𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

for the steerer parameters. Note, that inserting the BE model
from Eq. (2) directly into Eq. (3) gives the same result. The
equation system is solved by [6]

𝐴𝑚𝑘 =
∑𝑤 𝜃𝑤𝑘 det(𝑀𝑚𝑤𝑘)

4𝑖 sin (𝜋𝑞𝑚) (4)

with the matrices

𝑀11𝑘 =
⎛⎜⎜⎜
⎝

𝑍∗
11𝑘 𝑍21𝑘 𝑍∗

21𝑘
𝑍∗

12𝑘 𝑍22𝑘 𝑍∗
22𝑘

𝑍′∗
12𝑘 𝑍′

22𝑘 𝑍′∗
22𝑘

⎞⎟⎟⎟
⎠

𝑀12𝑘 =
⎛⎜⎜⎜
⎝

𝑍∗
11𝑘 𝑍21𝑘 𝑍∗

21𝑘
𝑍′∗

11𝑘 𝑍′
21𝑘 𝑍′∗

21𝑘
𝑍∗

12𝑘 𝑍22𝑘 𝑍∗
22𝑘

⎞⎟⎟⎟
⎠

𝑀21𝑘 =
⎛⎜⎜⎜
⎝

𝑍11𝑘 𝑍∗
11𝑘 𝑍∗

21𝑘
𝑍12𝑘 𝑍∗

12𝑘 𝑍∗
22𝑘

𝑍′
12𝑘 𝑍′∗

12𝑘 𝑍′∗
22𝑘

⎞⎟⎟⎟
⎠

𝑀22𝑘 =
⎛⎜⎜⎜
⎝

𝑍11𝑘 𝑍∗
11𝑘 𝑍∗

21𝑘
𝑍′

11𝑘 𝑍′∗
11𝑘 𝑍′∗

21𝑘
𝑍12𝑘 𝑍∗

12𝑘 𝑍∗
22𝑘

⎞⎟⎟⎟
⎠

encoding the betatron motion at the position of the steerer
magnet.

ORBIT RESPONSE FROM TRANSFER
MAPS

The orbit response in a transversly coupled storage ring
can also be calculated from transfer maps instead of opti-
cal functions [7]. Solving equation Eq. (3) for the orbit
displacement at the steerer magnet gives the orbit response

⃗𝑟(𝑠𝑘) = (1 − 𝑇𝑘𝑘)−1 ⃗𝜃𝑘

at the steerer magnet. It can be propagated through the stor-
age ring using matrix optics to determine the orbit reponse
at each BPM

⃗𝑟TM
𝑗𝑘 =

𝑇𝑘𝑗
1 − 𝑇𝑘𝑘

⃗𝜃𝑘. (5)

Here, 𝑇𝑘𝑗 is the transfer map which propagates the 4D phase
space vector from position 𝑠𝑘 to position 𝑠𝑗.

This model has been used in the calibration of the optics
model (CALIF) algorithm and the local optics from closed
orbits (LOCO) algorithm to fit lattice models onto measured
orbit response matrices by varying quadrupole gradients and
other parameters [8, 9].

SIMULATION-BASED MODEL
COMPARISON

The efficacies of the “transfer map” (TM) model and the
BE model were evaluated by generating response matrices
for both analytical models based on a linear optic model
of the storage ring at DELTA [10] and comparing them
to an orbit response matrix from simulated closed orbits.
The storage ring has 54 BPMs (horizontal and vertical) and
56 steerer magnets. Each simulated matrix therefore had
108 × 56 elements.

The response matrix of the TM model 𝑅TM was created
from transfer maps accessible via the MAD-X Twiss mod-
ule [11] according to Eq. (5). The response matrix for the BE
model 𝑅BE was created from Eq. (2) with the steerer param-
eters according to equation Eq. (4). The required 4D phasor
vectors at all BPMs and steerer magnets were generated by
propagating the complex eigenvectors of an one-turn transfer
map through the lattice. The required transfer maps were
also accessed via the MAD-X Twiss module. The response
matrix from closed orbits 𝑅CO was determined by executing
an orbit response measurement for each steerer magnet in
the simulation, taking the orbit after exciting each steerer
magnet by 0.1 mrad as orbit-response-matrix column.

The error of the analytical matrices

𝜎𝑅 =
∣∣𝑅CO − 𝑅TM/BE ∣∣

2

2

∣∣𝑅CO∣∣
2

2

, (6)

where ||...||22 is the l2 matrix norm, was calculated for varia-
tions of the base lattice model where each variation used a
different skew angle for the quadrupoles in the arcs of the
storage ring. The skew angles were deliberately added to the
lattice model to introduce transverse coupling. The results
are given in Fig. 2.

The predictions of the TM model and the BE model are
very close to the simulated outcomes for all skew angles and
coincide very well.

CONCLUSION
The BE model in thin-steerer approximation predicts the

orbit response in presence of transverse coupling very well.
In addition, it practically makes the same predictions as
another well-known orbit response model used in the LOCO
and CALIF algorithms [8, 9].

The BE model in Eq. (2) with the steerer parameters
in Eq. (4) can therefore be regarded as generalization of
Eq. (1) for transversly coupled storage rings: a formula to
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Figure 2: Response matrix errors for a range of quadrupole
skew angles.

determine the orbit response of a thin steerer magnet from
beta function and betatron phase (and their derivatives) in
the Mais-Ripken parametrization.
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