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Abstract
The time-series Beam Position Monitor (BPM) data of

kicked beam is a function of lattice parameters and beam
parameters including phase-space density. The decoherence
model using the first-order detuning parameter has an exact
solution when the beam is Gaussian. We parameterize the
beam phase-space density by multiple Gaussian kernels of
different weights, means, and sizes to formulate the inverse
problem for 2D phase-space tomography. Numerical opti-
mization and Bayesian inference are used to infer the beam
density and uncertainty.

INTRODUCTION
The BPM data of a kicked beam is a function of the linear

and nonlinear optics parameters [1], and the beam phase-
space density. Ignoring nonlinear normalizing map, we
model BPM data by

⟨𝑋⟩𝑡 = ℜ ⟨𝑋 − 𝑖𝑃⟩𝑡 (1)
= ℜ∫(𝑋 − 𝑖𝑃) 𝑒𝑖𝜔𝑡𝜌𝑋,𝑃(𝑋 − 𝑋0, 𝑃 − 𝑃0) 𝑑𝑋𝑑𝑃,

where 𝑋 and 𝑃 are normal conjugate variables

𝑋(𝑡) = √2𝛽𝐼 cos (𝜔𝑡 + 𝜙) ,
𝑃(𝑡) = −√2𝛽𝐼 sin (𝜔𝑡 + 𝜙) ,

and 𝑋0 and 𝑃0 are initial kicks (or offsets). Figures 1 and
2 illusrate the sensitivity of the BPM data on initial beam
phase-space density.

Figure 1: Kicked beam centroid data of initial Gaussian
beam.

It is convenient to introduce 𝜃 such that

𝑋0 − 𝑖𝑃0 = √2𝐼0𝛽 exp (−𝑖𝜃) , (2)

where 𝐼0 = (𝑋2
0 + 𝑃2

0)/2 is the action corresponding to
the initial beam centroid offset. Assuming slowly varying
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Figure 2: Kicked beam centroid data of initial uniform disk
beam.

frequency in the scale of the beam size, the frequency can
be modeled by

𝜔(Δ𝐼) = 𝜇0 + 𝜇1Δ𝐼, (3)

where Δ𝐼 ≡ 𝐼 − 𝐼0.
For Gaussian initial beam distribution, an exact solution

exists:

⟨𝑋⟩𝑡 =
𝑋0 (1 − 𝜏2) + 2𝑃0𝜏

(1 + 𝜏2)2 exp [−𝐼0
𝜖

𝜏2

1 + 𝜏2 ] cos Ψ (4)

−
2𝑋0𝜏 − 𝑃0 (1 − 𝜏2)

(1 + 𝜏2)2 exp [−𝐼0
𝜖

𝜏2

1 + 𝜏2 ] sin Ψ,

where 𝜏 ≡ 𝜖𝜇1𝑡 and Ψ ≡ 𝜇0𝑡 − (𝐼0/𝜖) 𝜏3/ (1 + 𝜏2).

2D PHASE-SPACE TOMOGRAPHY
STRATEGY

Marginal Distribution
For general initial beam distribution, one needs an approx-

imation to extract meaningful expression for the centroid
decoherence motion. As the centroid decoherence is due
to the phase-mixing, it is also advantageous to work on the
frequency domain. We define the following function in the
frequency domain:

𝐺(𝑘) = 2

√2𝛽𝐼0

𝑇
∑
𝑡=0

⟨𝑋⟩𝑡 [𝑒−𝑖𝑘𝑡] − cos 𝜃. (5)

In the limit of large initial offset compared to the initial beam
size 𝐼0 ≫ 𝜖, it can be shown that [2]

𝜌𝜃 (𝑥) ≃ √2𝛽𝐼0
∣𝜇1∣
𝜋 ℜ [𝐺 (𝑥𝜇1√2𝛽𝐼0 + 𝜇0) 𝑒𝑖𝜃] . (6)

This suggests that if we have multiple kicks of different
angles 𝜃, we can reconstruct the 2D phase-space. And more
kicks of different angles increase angular resolution.
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Gaussian Kernel Density Model
However, the large initial offset 𝐼0 ≫ 𝜖 condition can

be tight due to the physical beam pipe aperture. Recalling
that we have the exact solution for the Gaussian beam, we
parameterize the 2D beam density model using multiple
Gaussian kernels. Each Gaussian kernels have weight, rel-
ative locations (𝑥, 𝑝) from the beam center, and emittance
parameters.

𝜌𝑋,𝑃 (𝑋, 𝑃) = ∑
𝑖

𝐾𝑖(𝑋, 𝑃), (7)

𝐾𝑖(𝑋, 𝑃) ≡ 𝑤𝑖
1

2𝜋𝜖𝑖
𝑒− (𝑋−𝑋𝑖)

2+(𝑃−𝑃𝑖)
2

2𝜖𝑖 . (8)

Then, the centroid data of the whole beam is the linear sum
of each Gaussian kernel contributions. This translates our
problem as parameter fitting on the inverse problem.

Bayesian Approach
However, a large number of Gaussian kernels for good

resolution poses the task of the global parameter fitting of
the inverse problem very difficult due to the curse of di-
mensionality. We solve this problem using the Bayesian
approach [3, 4] with the prior mean from the parameter fit-
ting on the leading order model described in Eq. (6). The
leading order model helps us to initialize and fit the parame-
ters approximately close to the true solution as long as the
initial kicks are larger than the initial emittance. Once we fit
the parameters on the leading order model, we can build the
posterior using the following likelihood model:

𝑃 (𝜉| ⟨𝑋⟩𝑡,𝐵𝑃𝑀) = (9)

Π𝐾
𝑘=1

1
√2𝜋𝜎𝐵𝑃𝑀

exp
⎛⎜⎜⎜
⎝

−
𝑇

∑
𝑡=0

(⟨𝑋⟩𝑡,𝐵𝑃𝑀𝑘
− ⟨𝑋⟩𝑡,𝑚𝑜𝑑𝑒𝑙𝑘)

2

2𝜎2
𝐵𝑃𝑀 (𝑇 + 1)

⎞⎟⎟⎟
⎠

,

where 𝑘 is the index for each kick, and 𝜉 is the set of model
parameters including 𝜎𝐵𝑃𝑀 which is a parameter quantify-
ing model error and data noise. The prior serves not only
as a regularisation for the optimization but also an initial
starting point for the maximum a posteriori (MAP) estima-
tion using a local optimization algorithm. It also serves the
optimization stable preventing the optimizer explore large
parameter space not limited by the prior.

PROOF OF PRINCIPLE
Virtual Beam Centroid Signals

We randomly generate beam density and prepare 4 virtual
BPM data using 4 different initial kicks using the following
frequency model:

𝜔(𝐼) = 𝜔0 + 𝜔1𝐼 + 𝜔2
𝐼2

2 , (10)

and we ignore the effect by the nonlinear normalization map.
The initial beam emittance is chosen to be 2𝑛𝑚. The 4 kick
strengths are 3,4,5 and 6 times the beam emittance and the

kick angles are equally spaced from 0 to 𝜋. We also added
virtual noise of RMS size 20 𝜇𝑚. The ground truth beam
distribution and the BPM signals of 4 different kicks are
shown in Figs. 3 and 4.

Figure 3: Ground truth beam density is randomly generated.

Figure 4: Ground truth BPM signal of various kick angles.

Contruction of Prior
Note that, in Eq. (5) and Eq. (6), the frequencies 𝜇0 are

not coupled with any other parameters. This allows us to
optimize the frequencies using the following conditions (on
the 4 BPM data).

∫
∞

−∞
𝑥𝜌𝜃 (𝑥) 𝑑𝑥 = 0. (11)

We further optimize the initial kick strengths 𝐼0, angles 𝜃,
and betatron function 𝛽, using the following conditions (on
the 4 BPM data).

∫
∞

−∞
𝜌𝜃 (𝑥) 𝑑𝑥 = 1. (12)

Here the nonlinear detuning parameter 𝜇1 is determined
from the least-square fit of the frequencies 𝜇0 over the the
strengths of the initial kicks 𝐼0. Although we have fewer
constraints compared to the number of parameters to fit, we
experienced that when the initial guess is close to the ground
truth, the local optimization often worked well.

Once the prior mean of 𝜇0, 𝐼0, 𝜃, and 𝛽 are fixed, we fit the
gaussian kernel parameters so that the marginal distribution
equals to the estimation based on Eq. (6). The prior mean
location of Gaussian kernels and weights are shown in Fig. 5

The estimated marginal distribution using Eq. (6), before
and after fit are showin in Figs. 6 and 7 respectively. Once
we have the prior mean, we construct the prior using inde-
pendent normal distributions on 𝜇0, 𝐼0, 𝜃, and 𝛽 with the
standard deviation from our belief. For example, since we
are building prior from the leading order theory that is jus-
tified in the limit of 𝐼0 ≫ 𝜖, we choose a smaller standard

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-MOPAB235

MOPAB235C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

764

MC5: Beam Dynamics and EM Fields

D02 Non-linear Single Particle Dynamics



Figure 5: The locations of each Gaussian kernel colored
based on weights. The deviation from the grid points of
each kernel is not visible in this scale of the plot.

Figure 6: Estimated marginal distribution in 4 different kick
direction using Eq. (6) and the estimated parameters before
prior mean fitting (orange) and ground truth parameters
(green). The ground truth histogram is also shown in blue.
The horizontal unit is (mm) and the vertical unit is (1/mm).

deviation for smaller 𝜖/𝐼0. In other words, we have more
confidence in our belief for a larger initial kick. As for the
gaussian kernel parameters, we do not construct prior as it
is complicated.

Construct Posterior
Now we construct the posterior mean by maximizing the

posterior model Eq. (9). The distribution at MAP is shown
in Fig. 8.

UNCCERTAINTY
So far we have done a point estimate. Since our prior and

likelihood are modeled by gaussian distribution, the posterior
is also gaussian. This helps us to sample from posterior with
known credential level without relying on MCMC (Markov
chain Monte Carlo) that can be very computationally heavy
for convergency with so many parameters. One sample from
0.95 confidence interval is shown in Fig. 9.

Figure 7: Estimated marginal distribution in 4 different kick
direction using Eq. (6) and the parameters after prior mean
fitting (orange) and ground truth parameters (green). The
ground truth histogram is shown in blue. The marginal
distribution from the gaussian kernel model is shown in red.
The horizontal unit is (mm) and the vertical unit is (1/mm).

Figure 8: marginal and full 2D histogram of the Gaussian
kernel model at MAP. A highly bright point in the 2D his-
togram can be a numerical artifact of the binning resoulution.

Figure 9: marginal and full 2D histogram of the Gaussian
kernel model within 0.95 confidence interval. A highly
bright point in the 2D histogram can be a numerical artifact
of the binning resoulution.

CONCLUSION
We performed proof of principle of the 2D phase-space

tomography using beam centroid data of multiple kicked
beams. For better resolution, we need more kicks from dif-
ferent angles. The Bayesian approach helped us to avoid
the curse-of-dimensionality problem through prior belief
construction that could be done using the leading order the-
ory and local minimization. Then the MAP estimation also
could be done using local minimization. It also helped us
to sample from the posterior (to visualize uncertainty) with-
out relying on MCMC that is practically impossible with so
many parameters to infer.
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