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Abstract
We propose an approach for incorporating accelerator

physics models into reinforcement learning agents. The pro-
posed approach is based on the Taylor mapping technique for
the simulation of particle dynamics. The resulting computa-
tional graph is represented as a polynomial neural network
and embedded into the traditional reinforcement learning
agents. The application of the model is demonstrated in
a nonlinear simulation model of beam transmission. The
comparison of the approach with the traditional numerical
optimization as well as neural networks-based agents demon-
strates better convergence of the proposed technique.

INTRODUCTION
Traditionally, dynamical system behavior is represented

by physics-based modeling, which relies on the theory of
differential equations. Such models do not depend on data
and perform well regardless of inputs. At the same time,
exact models are difficult to build for real systems because
of their complexity. This compels us to employ equations in
approximate forms to meet scale-accuracy trade-offs, thus
inducing a gap between the real and predicted dynamics.

Increasing interest in machine learning (ML) brought a
bunch of methods to solve this problem [1–6]. Usually,
authors propose either ML-based fitting of the parameters of
ordinary (ODEs) or partial differential equations (PDEs), or
substituting the equation-based models by surrogate neural
networks.

To take into account the physics behind the black-box
model, some authors suggest incorporating domain knowl-
edge in the neural networks (NNs) or provide additional
loss functions for the physical inconsistency of the predic-
tions [7, 8]. Other approaches rely on the implementation
of a traditional step-by-step integrating method in a NN
framework [9].

The most relevant to our research is paper [10], where
authors introduce the connection between polynomial ODEs
and polynomial neural networks (PNN). Further, the PNNs
were widely highlighted in the literature [11–13].

In opposite to these works, we do not solve or fit ODEs of
interest with an NN-based learning procedure. We suggest
a deterministic algorithm to translate ODEs to PNN without
training. In [14] we demonstrated that if the dynamics of the
system follow approximately given ODE, the Taylor mapping
approach allows us to calculate weights of the PNN (TM-
PNN).
∗ Work supported by The Innovation Pool project AMALEA of the

Helmholtz association of Germany
† andrei.ivanov@desy.de

In the paper [15], the proposed TM-PNN architecture is
validated in practice for control one of the largest in the
world X-ray source, PETRAIII [16]. The TM-PNN is ini-
tialized from the ODEs that describe the particle motion in
a magnetic field. The resulting NN consists of 1519 hidden
polynomial layers with unique weights that are fine-tuned
with only one trajectory of the real system.

In this research, we present results of incorporating TM-
PNN into a reinforcement learning (RL) agent, see Fig. 1.
The simulation is based on the simplified but strongly non-
linear lattice described in the following section.

SIMULATION ENVIRONMENT
For simplicity, we consider particle motion in the hori-

zontal plane for the lattice (d, c1, d, sf, d, qf, ap1, d, d, c2, d,
sd, d, qd, ap2, d, d, m). There are two horizontal correctors
c1 and c2 that are used as actuators to transfer the beam.
It is assumed that each magnet and aperture have random
misalignments in the horizontal plane. The full description
of lattice elements is provided in Table 1.

Table 1: Lattice Specifications

Label Element Parameters

d Drift length=1
sf Sextupole length=0.2, k2=3000
sd Sextupole length=0.2, k2=-3000
qf Quadrupole length=0.2, k1=1, k2=20
qd Quadrupole length=0.2, k1=-1, k2=-20
ap1,ap2 Aperture xmax=0.005

The lattice is implemented on OCELOT simulation soft-
ware [17]. Due to the high nonlinearities, the considered
system has a high sensitivity to misalignments of the magnets
(see Fig. 2). Given the random errors in magnet placement,
the response of the systems depends on the two control vari-
ables (horizontal correctors) and is calculated as transmitted
beam rate (𝒯). In this formulation, the considered problem
can be defined as a 2-dimensional single output optimization
task:

𝒯 = 𝒯(𝑐1, 𝑐2, 𝑒𝑟𝑟𝑜𝑟𝑠) → 𝑚𝑎𝑥, (1)

where 𝑐1, 𝑐2 are strengths of the horizontal correctors.

NUMERICAL EXPERIMENTS
In the research, we used two different approaches for solv-

ing the optimization problem. The first one is numerical
optimization. The second one reinforcement learning agents
with two architectures (see Fig. 1). The first one directly
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Figure 1: Reinforcement learning agent joint with the physics-based polynomial neural network.

Figure 2: Response matrix of the transmission model for
different random misalignments.

predicts the optimal control variables, while the second one
use combination of NN with TM-PNN generated from an
ideal lattice.

Numerical Optimization
For benchmarking, we use traditional optimization meth-

ods. For simplicity, we use Powell’s conjugate direction
method to optimize function from Eq. (1). The implemen-
tation taken from scipy python package [18] requires 40
iteration steps on average. This means that given the random
errors in magnets placements and starting at random initial
point (𝑐1, 𝑐2) the optimal transmission rate can be achieved
after 40 measurements. Since the goal of our research is to
find out an optimal strategy that can outperform traditional
techniques, we use this step limit as the stopping condition
for reinforcement learning algorithms.

Model-free Reinforcement Learning
For implementing an optimal control policy we used

model from [19]. To be compatible with its interface, we
wrapped the optimization problem from Eq. (1) with Open-
AI GYM interface for RL environments.

The following models, algorithms, and hyperparameters
were tested during training the model:

• Models: TD3, DQN.
• Policies: MlpPolicy, CnnPolicy, FeedForwardPolicy,

LnMlpPolicy.
• Hyperparameters: learning rate, gamma.
During each training epochs, the neural network inside

the RL agent tries to predict the optimal control to maximize
the transmission rate. After 40 iterations, the environment is
reset, i.e. new random errors are applied for magnets. Unfor-
tunately, we did not achieve convergence for the considered
task. Figure 3 presents the result of training for the approach
of model-free prediction.

Figure 3: Training of the model-free RL agents: orange line
for initial transmission rate and a blue one for the final result.

Physics-enhanced Reinforcement Learning
To introduce additional physics knowledge to RL agents,

we propose to combine black-box NN and TM-PNN architec-
ture. Using the Taylor mapping techniques, the ideal lattice
without random misalignments is transformed to polyno-
mial NN that is introduced as an intermediate layer between
RL agent and environment (see Fig. 4). In this architecture,
the RL agent does not predict control but rather reconstruct
hidden variables of the system. This approach can be also
considered as a tuning of the TM-PNN with the RL agent.

Note also that such a model does not tune every particular
displacement in the lattice. Instead, it tunes all weights
of the TM-PNN in a data-driven way. After training, the
average number of iteration to achieve a threshold of 0.9
for the transmission rate is equal to 5. This significantly
outperforms the traditional numerical optimization, though
requires additional training with the given environment.
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Figure 4: Training results of the RL agents combined with
TM-PNN.

CODE
The implementation of the TM-PNN architecture in

Keras/TensorFlow for the considered lattice and the de-
scribed examples are available under https://github.
com/andiva/TM-PNN

CONCLUSION
In our experiments, model-free RL agents do not perform

well. This can be explained by the high sensitivity of the
chosen lattice to the random error distribution. For a new
set of random errors, the behavior of the system significantly
differs from the previous one.

Introducing an intermediate level with certain knowledge
about the system increases the convergence of the optimiza-
tion approach. In the proposed model, the RL agents play
the role of a generalization technique that does not require
knowledge of the parameters of the system but rather helps
to perform a data-driven tuning of the model.
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