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Abstract

Whilst the Vertical Excursion Fixed Field Alternating
Gradient Accelerator (VFFA) remains a promising solu-
tion to a number of problems at the frontiers of accelerator
physics [1, 2], the optics of this type of machine are still
poorly understood. Current designers are forced to rely on
brute-force numerical tracking codes, with optimisation de-
pendent on time-consuming parameter scans. With an aim
to both improve understanding of this machine, as well as
to develop tools for rapid design and optimisation of VFFA
lattices, first steps towards an analytic approach based on a
linearised Hamiltonian formalism have been developed.

INTRODUCTION

Fixed Field Alternating Gradient (FFA) accelerators [3-5]
in general are able to offer a number of advantages over
more common types of accelerator [6]. Synchrotrons are
limited in repetition rate by having to cycle magnet strength
between injection and top energies. Other existing high
repetition rate machines such as cyclotrons face limitations
in energy reach due to relativistic effects, and in focusing
strength due to lack of alternating gradient focusing. An
FFA is able to overcome the limitations of both synchrotrons
and cyclotrons, providing alternating gradient focusing with
fixed magnetic fields — making them ideal candidates for
fast acceleration, high intensity, and high repetition rate
applications.

These advantages are achieved in the conventional (hor-
izontal excursion) FFA by permitting the beam to move
horizontally outwards as energy increases, replacing the
time-varying fields of the synchrotron-type machines with
spatially-dependent fields to achieve scaling of bending and
focusing forces with energy and thereby a constant tune (in
a scaling FFA). This does imply a number of concessions; a
changing orbit radius necessitates changing RF frequencies
as the time of revolution varies in accordance, and the fields
required to realise the focusing of the FFA can in turn imply
complicated coil geometries for magnet design.

By way of contrast, the vertical excursion FFA
(VFFA) [1,2,7,8] increases its magnetic field strength with
height exponentially. Hence, stable orbits for all energies
exist at the same radius, and as particles are accelerated they
will adiabatically transition between these orbits (Fig. 1).
This, in turn, affords several additional advantages over the
horizontal FFA — including a simpler coil geometry [9].
With orbits at constant radius, the transition energy becomes
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infinite, and for relativistic particles the acceleration cycle
becomes near-isochronous, simplifying the requirements for
the RF system. This is a key advantage for muon acceleration,
where high gradient cavities will be required [10] (which
implies high frequency narrow-band cavities) — though re-
moving the requirement for cycling of RF frequency in gen-
eral would also enable an increase in repetition rate (and, in
the case of ultrarelativistic particles, potentially even CW
operation).
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Figure 1: Diagram showing the behaviour of orbits with
progressively higher and higher energies, both in the novel
VFFA and conventional hFFA schemes.

However, the magnetic fields required to realise a scaling
VFFA introduce additional complexity into the optics of the
machine, with a high degree of nonlinearity and uniquely
coupled optics. Depending on the lattice parameters, the
fringe fields can contain strong longitudinal components,
leading to a complex coupling of the horizontal and vertical
coordinates. Moreover, the form of the closed orbits thus
far identified by the numerical modelling codes employed
by S. Machida, J. -B Lagrange, et al. [2], appears to be for
the most part non-planar (i.e. the orbits have significant
deviation from the horizontal plane over the course of a cell).
These factors combine to make a machine with complicated,
non-intuitive optics, and all attempts at modelling it and its
properties so far have relied on extensive numerical simu-
lation. This means that the lattice design and optimisation
processes are very time-consuming, and the understanding
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of the machine and the effects of the lattice design on its
ultimate properties is limited. As such, an analytic under-
standing of the nature of the VFFA and its fundamental
behaviour as lattice parameters are varied could massively
benefit the study of this type of machine.

APPROACH
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Figure 2: The geometry of an orbit through a straight VFFA
cell - note that the trajectory exhibits non-zero curvature in
its projection onto both the horizontal and vertical planes
(dotted lines).

In order to develop an understanding of the machine, it
is easiest to begin with the simplest case: a straight cell,
with long magnets (in comparison to the fringe lengths).
The geometry of such an orbit is shown in Fig. 2. This
reduces the complexity of the system substantially: most
of the behaviour of the lattice should be determined by the
magnet body dynamics (assuming that the fringe fields can
be neglected) and the coupling will be simplified; a small
curvature within magnets should enable the curvature of the
closed orbit to be neglected (if the strong focusing terms
are of order 1/ p, the weak focusing terms from the orbit’s
curvature will be of order 1/ p? — which can be considered
negligible for large p); and the change in position of the
closed orbit through the magnet should be small. Moreover,
this should minimise the effect of any edge angles.

With these assumptions in mind, vector potentials for
the system can be derived from the scaling criterion for the
VFFA,

B~ emy7
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in which m is the vertical field index that describes the verti-
cal scaling gradient.

By assuming a polynomial expansion and applying
Maxwell’s equations, we are able to obtain
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where f(Z) represents the field strength as a function of
longitudinal position in the magnet. For the case f(Z) = 1
(as in the magnet body) we see that the vector potential has
only a longitudinal component. To take into account the
displacement of the closed orbit from the magnet midplane,
Xp, it is necessary to expand this vector potential to 3rd order
and make the coordinate transformation
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In the magnet body, then, this leads to the following Hamil-

tonian to first order in the dynamical variables (neglecting
dipole-order and sextupole or higher order terms):

H =P7’% + P—§ (10)
+%(1—m22x(2))xy (11)
+ m;;o $2 m2 ;0 2 (12)
+ ”l';)?yz, (13)

in which p represents the curvature of the closed orbit due
to the dipole field of the magnet at a given height.
Hamilton’s equations are then applied to the above Hamil-
tonians, and transfer matrices are constructed from the re-
sultant equations of motion via Euler integration in a simple
linear optics code. This gives a quick way of testing the

performance of various formulations of the Hamiltonian de- *

scription of the machine in terms of tune agreement with
numerical simulations, such as SCODE+.

TESTING THE LINEARISED MODEL

The behaviour of this linearised code (and thereby the
Hamiltonian construction of the VFFA) is then tested by
constructing a straight lattice, with parameters (15 m mag-
nets, 35 m cell length) patterned after the 50 GeV — [energy]
muon accelerator lattice proposed by S. Machida [11]. The
tunes of several lattices following this scheme are evalu-
ated, both in SCODE+ and the linearised code based on the
Hamiltonians above, whilst the ratio of the field strengths at
constant height between the bend and reverse bend magnets
in the cell (termed the FD ratio) is varied, and the results
from this are displayed in Fig. 3.

It can be seen that the tunes from the linear model and
those from SCODE+ converge as the FD ratio approaches
1, and that the agreement is very good above an FD ratio of
0.95. As Fig. 4 shows, this is when the closed orbit is closest
to a planar form.
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Figure 3: Tune in the decoupled u and v planes as a function
of the ratio between field strengths between F and D magnets
in SCODE+ (black), and the linearised Hamiltonian code
with (red) and without (blue) an offset of the closed orbit
from the magnet midplane considered.
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Figure 4: Orbit trajectory through the straight cell in x and
y planes as a function of FD ratio. The horizontal coloured
lines in the second plot represent the mean orbit X position
through the magnet, used to set x, and the solid black hori-
zontal line denotes the magnet midplane.
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Howeyver, as the FD ratio is decreased further, the tunes
from the Hamiltonian model begin to diverge from the sim-
ulation results. This divergence indicates the presence of
an effect not described in the current Hamiltonian; whilst
the existing Hamiltonian does contain a number of variables
that should vary as a function of the FD ratio, in practice
the degrees of freedom in the model as it stands seem in-
sufficient to parameterise the system. In the magnet body
Hamiltonian (Eq. (13)), there exist only two parameters that
are direct properties of the lattice: p and x. Whilst at first
glance it might seem that these parameters could be sepa-
rately defined for the F and D magnets and thus give four
degrees of freedom, in fact this is not the case. As the cell
has no bending angle, p, must equal —p; (with the differ-
ence between dipole field strengths at constant height then
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compensated by vertical deviation of the orbits between the
two magnets, seen in Fig. 4). Similarly, to achieve zero
vertical bending, the integral of the horizontal field must
be zero, and as the horizontal field is directly proportional
to the horizontal displacement from the magnet midplane,
this necessitates xor = xo,. We also note that successive
trajectories appear as translations of each other when the FD
ratio is varied (Fig. 4), showing that p; = —p ; does not vary
significantly as a function of the FD ratio. The presence of
Xo terms also appears to have very little effect, despite the
apparent increase in the magnitude of x( seen in Fig. 4. This
further reinforces the conclusion that the current Hamilto-
nian depiction is still missing a significant element involved
in the straight VFFAs as we move away from FD = 1.

Although fringe fields are completely neglected in the
version of the lattice considered in the Hamiltonian code, it
isn’t immediately obvious that the simple addition of fringe
field components would produce the observed tune depen-
dence on the FD ratio. Similarly, horizontal edge angles
were considered in a previous version of the code, though
Fig. 4 indicates that between changes in the FD ratio the
horizontal edge angle remains constant (with each succes-
sive trajectory merely translated away from the midplane).
However, Fig. 4 reveals that the shape of the vertical trajec-
tory has a dependence on the FD ratio, and therefore may
have different vertical edge focusing effects for each lattice.
Another potential explanation for the divergence of the tunes
predicted at lower FD ratios comes from the horizontal trans-
lation of the trajectories — as the trajectory deviates further
and further from the midplane, it progresses further from the
most linear region of the magnet, and it may be that higher
order terms in the x(, offset must be considered.

CONCLUSION

The close numerical agreement of tune values between
the linearised Hamiltonian code and the in depth SCODE+
simulations for the straight VFFA with FD ratio close to
1 is a promising first step towards an analytic formulation
of the VFFA and thereby an understanding of its optics.
The divergence of tune as we move away from this case
toward lattices with non-equal magnet strengths (and in the
future curved lattices) belies the importance of further study
and the introduction of new elements into the Hamiltonian
description.

One promising candidate for the missing component
of the model is edge focusing from a vertical edge angle,
which is one property of the orbit that displays a strong
dependence on FD ratio. Hence, the next part of the analytic
investigation of the VFFA will involve development of a
Hamiltonian for fringe fields that accounts for this additional
focusing.
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