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Abstract 
The applications of machine learning in today’s world 

encompass all fields of life and physical sciences. In this 
paper, we implement a machine learning based algorithm 
in the context of laser physics and particle accelerators. 
Specifically, a neural network-based optimisation 
algorithm has been developed that offers enhanced control 
over an ultrafast femtosecond laser in comparison to the 
traditional Proportional Integral and derivative (PID) 
controls. This research opens a new potential of utilising 
machine learning and even deep learning techniques to 
improve the performance of several different lasers and 
accelerators systems. 

INTRODUCTION
Machine learning (ML) and the advent of deep learning 

have reduced solving several complicated problems into a 
few lines of code. The ability of these techniques to be able 
to handle high complexities and N-dimensionality, allow 
ML to solve several critical optimization problems. Several 
fields of research today rely on these algorithms. From 
areas of research such as computer vision [1] to life 
sciences such as computational biology [2], ML has been a 
reliable tool of research. Within the field, neural networks 
lead the forefront in applicability as compared to other ML 
based algorithms. The ability of neural networks to be able 
to capture any mathematical operation makes it one of the 
most versatile computer algorithms for prediction and 
classification. 

Particle accelerators are used to produce beams of 
charged particles using electromagnetic fields. The particle 
beams are then used for a diverse range of applications, 
ranging from material research to treatment of cancer for 
example. Particle accelerators are typically very complex 
systems which have several subsystems, all of which have 
a nonlinear rule governing them. Theoretical modelling of 
these systems is a very cumbersome process due to the 
complexities that come with it. Without any steady state at 

any instance of operation, theoretical prediction of control 
and automation fails to reach the practical values. 

This research is done in the context of electron beam 
accelerators, where the electron production is done via 
photoelectric effect, by shining a laser on a photocathode. 
The electron production process depends on the 
photocathode material but also on the high-power laser 
used to irradiate the cathode [3], on the shape of the laser 
beam shining on the photocathode. The laser beam profile 
can be shaped using for example a deformable mirror, 
giving us the capability of accurately controlling the 
driving laser beam to maximize electron beam parameters, 
thus maximizing the efficiency of the experiment. 

In general, our neural network model is designed to 
optimize the actuators controlling the deformable mirror 
[4], and therefore the laser beam profile shining on the 
photocathode so that properties of the electron beam 
downstream are optimized, e.g., higher beam current or 
lower beam emittance. The beam emittance is particularly 
sensitive to the initial electrons produced at the 
photocathode, and in general it grows as the beam travels 
through the accelerator, thus emphasising the importance 
of having accurate control on the laser system, and the 
motivation of using ML to further push the accelerator 
performance, particularly in low energy electron beam 
experimental lines. 

In this paper, we implement a machine learning based 
algorithm in the context of laser physics and particle 
accelerators. For this work, we use the low-jitter 
DAZZLER input parameters to produce an optimised time-
bandwidth product as output. The corresponding 
Frequency Resolved Optical Grating (FROG) outputs were 
used to train the network. The FFNN model formulated 
shows a high accuracy in comparison to the other state-of-
the-art control techniques. This opens a new potential of 
utilising ML and even deep learning techniques to improve 
the performance of several different lasers and accelerators 
systems. 

 ___________________________________________  
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Fig. 1: A schematic of the Experimental setup. As can be seen, there are 6 input parameters which after modelling and 
input-output mapping predict the temporal Full width half maximum as output. 

RESEARCH METHODOLOGY 
The development of the model, including the laser control 
and parameter selection along with training and testing of 
the algorithm was performed in line with the  experimental 
setup reported in [5], where a genetic algorithm was used 
to find the solution of optimised parameters for 
37 actuators, we try to develop an iterative neural network 
as can be seen in Fig. 1. In a proposed neural network, we 
take the experimental parameters that we obtain from 
DAZZLER settings. These parameters are the second, third 
and the fourth order phases, the hole position, width and 
the depth of the laser pulse that is provided by a 
femtosecond laser cavity. The output of the neural network 
consists of the FROG parameters that typically have seven 
characteristics. These characteristics include temporal full-
width-half-maximum (Temp-FWHM), the temporal root 
mean square (RMS), the time-bandwidth product FWHM 
and RMS, the phase error, skewness, and the excess. 
Typically, any laser pulse can be expressed and described 
using amplitude and phases. Typically, by creating a hole 
in the laser spectrum before it enters the amplifier can lead 
to laser pulses with large bandwidth and ultrashort pulse 
duration. The amplitude and phase of the pulse can be 
further tuned and explicitly perturbed with the help of the 

hole parameters which are the hole position, width, and 
depth. 

For our neural network model, we try to put more 
emphasis on the temp-FWHM. In that context, instead of 
optimising all seven FROG parameters, only the temp-
FWHM was set as output parameter in the pipeline. Due to 
this, the other trade-off which existed during the 
optimisation of all parameters was neglected and accuracy 
of predictions of temp-FWHM was improved. 
Furthermore, in addition to the input/output feature 
selection and model definition, the training function for the 
FFNN was chosen to be the Levenberg-Marquardt 
algorithm [6]. 

The modelling of the neural network and its training was 
done with the help of 2000 laser pulse shots, each 
corresponding to a single data point in data set. Out of these 
1000 laser pulse shots were fed to the neural network 
iteratively to train the neural network. The rest of the data 
points were reserved for testing of the model. For ease of 
calculating and for the proof of concept, the neural network 
was made with two hidden layers equipped with 10 and 
5 neurons, respectively. After the entire training process 
with the help of the Levenberg-Marquardt algorithm, the 
target estimation and the performance measurement were 
calculated. To measure the performance, we use the mean 
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square error function, which is usually a standard way of 
expressing the error in prediction of the output in neural 
networks. 

 
RESULTS AND DISCUSSION  

Here we discuss preliminary results and outline the 
future work with this approach of using ML to solve neural 
network-based laser and particle accelerator control 
optimisation. 

After the training of the model with a total of 
1000 points, we see the error rates for most of the test data 
is nearly 0. Moreover, with a high number of epochs we 
can further tune the error of prediction. There can be 
significant increase in the accuracy, had we used more 
hidden layers. In the direction of future prospective study 
using our proposed neural network, we can work with 
optimising the total number of layers that would be 
required for sufficiently correct prediction of the 
TBP-FWHM, for a given set of computational constraints. 
Moreover, the ability to handle high level computational 
complexities can be appreciated through this process. In 
comparison to the other optimisation methods such as 
using extremum optimisation of parameters [7], our neural 
network performs faster and more efficient. 

Further work using multiple layers using a higher 
number of data points in underway to better understand the 
input/output relationship. Moreover, through the help of a 
large dataset, an open source-based tool can be developed 
which could automate the entire process of parameter 
optimisation of such systems for enhanced control. 

 
CONCLUSION  

In summary, with the help of machine learning and deep 
learning techniques, the modelling of an ultrafast pulse 
laser was performed. In this context, with the help of a 
neural network, the correlation between the DAZZLER 
input parameters and FROG output parameters was 
investigated. Further, a numerical prediction model to get 
the time-bandwidth product of a laser pulse in the presence 
of a parameter-tuneable hole in the laser spectrum was 
reported. The results show that neural networks outperform 
the state-of-the-art methods of control like PID 
optimization of ultrafast pulse lasers. Further work is 
underway, with an effort towards experimental 
demonstration of the neural network. Moreover, more 
detailed results along with numerical results of the FFNN, 
will be presented at the conference. 
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