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Abstract
Diffusive models for representing the nonlinear beam dy-

namics in a circular accelerator ring have been developed in
recent years. The novelty of the work presented here with
respect to older approaches is that the functional form of the
diffusion coefficient is derived from the time stability esti-
mate of the Nekhoroshev theorem. In this paper, we discuss
the latest results obtained for simple models of nonlinear
betratronic motion.

INTRODUCTION
In the design stage of high-energy particle accelerators,

especially those based on superconducting magnets, such as
LHC [1], its upgrade project HL–LHC [2], or the proposed
FCC–hh [3], it is fundamental to take into consideration the
effects of unavoidable nonlinear magnetic field errors on the
beam losses.

A key quantity for the evaluation of the accelerator’s per-
formance is the Dynamic Aperture (DA), i.e. the maximum
amplitude of the connected phase-space region where mo-
tion is stable up to a given number of turns [4]. Studies
have been carried out to characterize and predict the DA as
a function of the turns particles make around the accelera-
tor (see [5–7] and references therein), and highlighted how
the evolution of DA can be described as a coexistence of
weakly-chaotic regions, whose escape rates can be described
in terms of a Nekhoroshev-like estimate. Such interest in
DA prediction comes from the fact that DA computation
requires the tracking of a large number of initial conditions
for a large number of turns, typically (𝑁𝑡 > 106).

Recent experiments at the LHC allowed to measure the
beam losses in presence of nonlinear effects, and a diffusive
approach, inspired by the stability estimates of Nekhoroshev
theorem for Hamiltonian systems, could allow describing in
a quantitative way the long-term beam losses [8, 9]. In this
paper, the theoretical background of a diffusive model based
on a Fokker-Planck (FP) equation with a Nekhoroshev-like
diffusion coefficient is reviewed and discussed in detail.

THE DIFFUSION FRAMEWORK
From Hamiltonian perturbation theory, we know that

macroscopic diffusion phenomena have to be related to the
presence of significant weakly-chaotic regions [10]. Other-
wise, the presence of invariant Kolmogorov–Arnol’d–Moser
tori ensure long-term stability [11].

In accelerators, the presence of a multitude of unavoidable
small random perturbations [12], as well as slow modulation
∗ Work supported by the HL-LHC Project
† carlo.emilio.montanari@cern.ch

and transverse tune ripples, could lead to the formation of
these weakly-chaotic regions. Therefore, one can assume
that particle motion is described by models of the form

𝐻(𝜃, 𝐼, 𝑡) = 𝐻0(𝐼) + 𝜉(𝑡)𝐻1(𝜃, 𝐼) , (1)

where (𝐼, 𝜃) are action-angle variables, 𝜉(𝑡) is a continuous
stationary stochastic noise with zero mean to represent the
effect of the chaotic dynamics. For a symplectic map in the
neighborhood of an elliptic fixed point an optimal estimate
‖𝑅‖ for the Birkhoff Normal Form series reminder is given
by [13, 14]

‖𝑅‖ = 𝐴 exp ⎡⎢
⎣
− (𝐼∗

𝐼 )
1

2𝜅 ⎤⎥
⎦

, (2)

where 𝐴 is a scaling factor, the exponent 𝜅 depends on the
number of degrees of freedom of the system, and the ac-
tion 𝐼∗ represents an apparent radius of convergence of the
perturbative series.

A diffusive approach for the evolution of the action distri-
bution can be used, by application of the Averaging Princi-
ple, when the noise decorrelation is sufficiently fast (see [9]
for the mathematical detail and [15] for an application to
a stochastic symplectic map). The following FP equation
holds for the evolution of the action distribution 𝜌(𝐼, 𝑡)

𝜕𝜌
𝜕𝑡 = 𝜀2

2
𝜕
𝜕𝐼𝐷(𝐼) 𝜕

𝜕𝐼𝜌(𝐼, 𝑡) , (3)

where 𝜀 is a scaling factor related to the perturbation ampli-
tude and, according to (2), the diffusion coefficient reads

𝐷(𝐼) = 𝑐 exp ⎡⎢
⎣
−2 (𝐼∗

𝐼 )
1

2𝜅 ⎤⎥
⎦

, ∫
𝐼a

0
𝐷(𝐼)d𝐼 = 1 , (4)

where 𝑐 is a normalisation constant and 𝐼a is the position of
the absorbing boundary condition, i.e. the phase-space limit
beyond which a particle is considered lost or the position of
a collimator. Note 𝐷(𝐼) and 𝜌 have dimensions 𝐼2 𝑡−1 and
𝐼−1, respectively.

ANALYTIC ESTIMATE
OF THE CURRENT LOST

Equation (3) provides a means to obtain an analytic esti-
mate for the current lost at the absorbing barrier (see [9] for
the detail).

We start by considering the rescaled time 𝜏 = 𝜀2𝑡 and by
applying the following change of variables

𝑥 = − ∫
𝐼a

𝐼
1

𝐷1/2(𝐼′)
d𝐼′ , 𝜌′(𝑥, 𝜏) = 𝜌(𝐼, 𝜏) d𝐼

d𝑥 , (5)
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which leads to

𝜕𝜌′

𝜕𝜏 = 1
2

𝜕
𝜕𝑥 [ 1

𝐷1/2
d𝐷1/2

d𝑥 𝜌′] + 1
2

𝜕2𝜌′

𝜕𝑥2 , (6)

where 𝐷 = 𝐷 (𝐼(𝑥)). By introducing the effective poten-
tial 𝑉(𝑥) = − ln(𝐷1/2(𝑥)), we obtain the Smoluchowsky
form [16]

𝜕𝜌′

𝜕𝜏 = 1
2

𝜕
𝜕𝑥

d𝑉(𝑥)
d𝑥 𝜌′ + 1

2
𝜕2𝜌′

𝜕𝑥2 . (7)

Equation (7) can be made self-adjoint by means of the fol-
lowing change of variables

𝜌′(𝑥, 𝜏) = exp [−𝑉(𝑥)
2 ] 𝑝(𝑥, 𝜏) , (8)

and Eq. (7) is cast into the self-adjoint form

𝜕𝑝
𝜕𝜏 = 1

4 [d2𝑉
d𝑥2 − 1

2 (d𝑉
d𝑥 )

2
] 𝑝 + 1

2
𝜕2𝑝
𝜕𝑥2 . (9)

The general solution of Eq. (9) can be expanded as

𝑝(𝑥, 𝜏) = ∑
𝜆

𝑐𝜆(𝜏)𝜙𝜆(𝑥) , (10)

where 𝑐𝜆(𝜏) = 𝑐𝜆(0)𝑒−𝜆𝜏, and 𝜙𝜆(𝑥) are the eigenfunc-
tions of the operator on the r.h.s. of Eq. (9), namely

2
⎧{
⎨{⎩
−1

4 [d2𝑉
d𝑥2 − 1

2 (d𝑉
d𝑥 )

2
] − 𝜆

⎫}
⎬}⎭

𝜙𝜆(𝑥) = d2𝜙𝜆
d𝑥2 . (11)

By using the orthogonality and completeness properties of
𝜙𝜆(𝑥), the solution for an initial Dirac delta distribution
𝜌′(𝑥, 0) = 𝛿(𝑥 − 𝑥0) can be written as

𝜌′(𝑥, 𝜏) = exp [𝑉(𝑥0) − 𝑉(𝑥)
2 ] ∑

𝜆
𝑒−𝜆𝜏𝜙𝜆(𝑥0)𝜙𝜆(𝑥) ,

and the current lost at an absorbing boundary in 𝑥 = 0, which
in the original variables corresponds to 𝐼 = 𝐼a, reads

𝐽(𝜏) = 1
2

𝜕𝜌′

𝜕𝑥 ∣
(0,𝜏)

. (12)

If one approximates the force with a constant drift towards
the boundary condition, i.e. 𝑉(𝑥) ≃ −𝜈 𝑥, one can obtain an
analytic solution to the eigenvalue problem in Eq. (11)

−2 [𝜆 − 𝜈2

2 ] 𝜙𝜆(𝑥) = d2𝜙𝜆
d𝑥2 , (13)

and if we replace this solution into Eq. (12), we obtain the
expression for the current lost

𝐽(𝑥0, 𝜏) = |𝑥0|

𝜏√2𝜋𝜏
exp ⎛⎜

⎝
−

(𝑥0 + 𝜈
2 𝜏)2

2𝜏
⎞⎟
⎠

. (14)

Note 𝐽 has dimension 𝑡−1 and for an initial condition 𝛿(𝑥 −
𝑥0), the linearization of the potential near 𝑥 = 𝑥0 provides

𝜈(𝑥0) = 𝑐1/2
1

2𝜅
𝐼(𝑥0) ( 𝐼∗

𝐼(𝑥0))
1

2𝜅
exp ⎡⎢

⎣
− ( 𝐼∗

𝐼(𝑥0))
1

2𝜅 ⎤⎥
⎦

,

(15)

which can be inserted into Eq. (14), for obtaining an analyti-
cal estimate of the current lost.

Equations (14) and (15) provide inevitably an underesti-
mate of the actual current lost, as the actual drift term is
a positive-increasing function for 𝐼0 ≪ 𝐼∗. However, we
expect a good description of the local behaviour close to the
absorbing boundary condition, i.e. we obtain a good esti-
mate of the current lost for initial distributions that are close
enough to the absorbing barrier at 𝐼 = 𝐼a.

NUMERICAL SIMULATIONS
We analyze the diffusive process in Eq. (3) using param-

eters similar to those in [9]: 𝐼∗ = 21.5, 𝜅 = 0.33, and
𝜀2/2 = 𝑐. The initial condition 𝜌(𝐼, 0) is a uniform dis-
tribution with a sharp cut, generated by a logistic function,
centered at a position 𝐼0 < 𝐼a, namely

𝜌(𝐼, 0) = (1 + 𝑒
(𝐼−𝐼0)

ℓ )
−1

, (16)

where ℓ is chosen so that the cut is smooth enough to avoid
issues in the numerical integration of Eq. (3), but sharp
enough to not affect the results. In Fig. 1, we show the func-
tion 𝐷(𝐼) normalized over the interval [0, 𝐼a] as a function
of 𝐼/𝐼∗ (top), and the evolution of a distribution with the po-
sition of the cut at 𝐼0/𝐼∗ = 0.22 and the absorbing boundary
condition at 𝐼a/𝐼∗ = 0.233 (bottom). The numerical inte-
gration of (3) is performed by means of a Crank-Nicolson
scheme [17] with 2500 uniform spatial samples over [0, 𝐼a],
in which ℓ has been set to five times the sampling fineness.

In order to test the estimate defined in Eq. (14), applying a
numerical convolution to consider that the form of the initial
condition is not 𝛿(𝑥 − 𝑥0) but (16), and the possibility to de-
termine 𝐼∗ and 𝜅 from the simulated current, two scenarios
have been considered: i) 𝐼0 is varied in a given interval, while
𝐼a is kept constant; ii) 𝐼0 and 𝐼a are varied while keeping their
distance constant. In both scenarios, 𝐼0/𝐼∗ ∈ [0.18, 0.23],
whereas in the first scenario 𝐼a/𝐼∗ = 0.233, and for the sec-
ond one 𝐼a − 𝐼0 = 0.1. Both scenarios are relevant for the
analysis of past and the proposal of future experiments on
beam-halo dynamics.

In Fig. 2, we show the performance of the reconstruction
method for 𝐼∗ and 𝜅 from a single simulated current pro-
file. We observe that Eq. (14) underestimates the simulated
current profile in both scenarios, but scenario ii) provides
a very good reconstruction of the true current. This is not
unexpected, as in this case the short distance between the
logistic cut (Eq. (16)) and the absorbing boundary makes
the linearization in Eq. (15) well justified. However, we also
observe that the fit to reconstruct 𝐼∗, 𝜅 performs much better
for scenario i), which might be related to the transient effects
of the initial distribution and the numerical instabilities they
generate to the fitting routine.

Considering the results of the experiments probing the
beam-halo dynamics at the LHC [18], we remark that, more
than the beam-loss evolution itself, the timings of the vari-
ous phases of the current loss measurements (e.g. ramp-up,
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Figure 1: Top: 𝐷(𝐼) normalized, for 𝐼∗ = 21.5, 𝜅 = 0.5.
Bottom: Evolution of the distribution function. The initial
condition has a logistic cut at 𝐼0/𝐼∗ = 0.225. The vertical
line represents the boundary condition.
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Figure 2: Comparison between simulated current, analytic
formula (14) with (15) and known values of 𝜅, 𝐼∗, and ana-
lytic reconstruction with fitted parameters. Green and blue
are for scenario i) and ii), respectively. The logistic cut is at
𝐼0/𝐼∗ = 0.186.

peak, decaying time) can be valid observables from the beam
loss monitors to estimate the diffusion coefficient. We are
interested in analyzing how accurate is the reconstruction of
𝐼∗ and 𝜅 using Eq. (14), given the timing of multiple current
peaks corresponding to different values of 𝐼0/𝐼∗.

The results of the fitting procedure are shown in Fig. 3 in
terms of relative errors for 𝜅 (top) and 𝐼∗ (bottom) vs 𝐼0/𝐼∗.
The fits based on the interpolation of the entire current shape
show a well-defined behaviour: scenario ii) is better in terms
of the maximum error in the reconstructed parameters, al-
though scenario i) might be superior for some specific value
of 𝐼0/𝐼∗. At the heart of this behaviour is the linearisation of
𝑉, and remarkable is the correlation of the model parameters.
However, the fit strategy based on fitting simultaneously sev-
eral current-peak times recovers very accurate values of 𝐼∗
and 𝜅, and scenario ii) clearly outperforms i).

CONCLUSIONS AND OUTLOOK
A diffusive framework for the analysis of nonlinear ef-

fects on the evolution of the beam distribution has been pre-
sented and discussed using stochastic Hamiltonian systems.
The key assumption is that in the weakly-chaotic regions of

−0.025
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∆
κ
/
κ
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−0.05

0.00
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∆
I ∗
/I
∗

True I∗ = 21.500 I∗ = 21.507 I∗ = 21.415

Figure 3: Relative errors for fitted parameters 𝜅 (top) and
𝐼∗ (bottom) vs 𝐼0/𝐼∗. The circles represent the fit results
based on full current shape interpolation, which are fitted
individually for each 𝐼0/𝐼∗ value. The blue dashed lines
and the green dotted lines represent the fit results based
on the time of the current maximum, which are considered
simultaneously for all 𝐼0/𝐼∗ values. Green and blue colors are
for scenario i) and ii), respectively. The red line represents
the true values of the model parameters.

phase space the action variable undergoes a diffusion process
whose diffusion coefficient has a functional form derived
from the stability estimates of the Nekhoroshev theorem.

Numerical simulations have been performed to assess the
performance of a fitting procedure to determine the model
parameters of the diffusion coefficient, which is relevant for
future experiments and performance measurements on beam
losses. It has been shown that the analytical estimate of
the evolution of the current lost at the absorbing boundary
provides a reasonable estimate of the simulated current lost.
Two scenarios have been considered: the first one assumes
that the position of the absorbing boundary is fixed, whereas
the cut of the initial distribution is varied. The second one
assumes that both the absorbing boundary and the cut vary
while keeping their distance constant. The latter provides
an excellent reconstruction of the model parameters when
several simulations are considered together, although it was
observed that the transient effects of the initial distribution
might affect some fitting procedures.

Further studies are on-going to make this approach more
realistic and to apply it to the collimator scans that are used
to probe the beam-halo dynamics in the LHC.
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