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Abstract 
     Modern storage-ring designs often require an uneven 
bunch distribution pattern. An uneven bunch fill pattern 
can result in complex structures for the beam current spec-
tra. Particularly at high average beam currents, these com-
plex current spectra need to be taken into account in con-
cern of beam-dynamical effects. In this study, we analyze 
a beam current spectrum for various filling patterns with 
bunch trains and gaps. The characteristics of the resulting 
beam current spectra are illustrated and discussed.  

INTRODUCTION 
     The performance goals of modern storage rings, either 
high brilliance for synchrotron light sources or high lumi-
nosity for circular colliders, often require a high average-
current operation using a large number of bunches. Such a 
parameter regime is prone to a fast growth of coupled-
bunch instabilities, which demands efficient mitigation 
measures. The RF buckets in these storage rings are often 
unevenly filled, because of a gap or several gaps needed 
for the injection/ejection and the requirement of ion clear-
ing in the electron ring or the electron-cloud clearing in the 
ion ring. The impact of a partial-fill pattern on the potential 
well distortion and coupled-bunch instabilities has been a 
topic of interest for a long time [1-5]. An analytical expres-
sion of the beam current spectrum for an uneven bunch fill 
pattern should be helpful for these studies. Such an expres-
sion was presented earlier for a general bunch filling pat-
tern [6].  
 Recently, during the Jefferson Lab electron-ion collider 
(JLEIC) design study, numerical modeling of the beam 
power loss was carried out for the JLEIC e-ring, specifi-
cally due to the IR chamber impedance [7], and for the cir-
culator cooler ring of the JLEIC e-cooler due to the har-
monic kicker impedance [8]. To understand the intricate re-
sults from these studies, we analyzed the beam current 
spectrum for the simple situation when the beam consists 
of bunch trains (for constant bunch charge) separated by 
gaps. Our analysis is described in this paper. In particular, 
using the JLEIC examples, we show the roles of the filling 
factor and the sideband interference and demonstrate how 
their combination gives rise to the intricate behavior of the 
current spectrum. Good agreement between theory and the 
direct discrete Fourier transform (DFT) is exhibited. The 
current spectral amplitude for the ongoing electron-ion col-
lider (EIC) design is also presented. 

BUNCH DISTRIBUTION 
    We first describe the uneven bunch distribution in a stor-
age ring and its normalization. Time duration, rather than 
distance, is used here for the description. 
  Let 𝑓଴ be the revolution frequency, with revolution pe-
riod 𝑇଴ ൌ 𝑓଴ି ଵ. The ring is filled by 𝐾 bunch trains (or 
pulses), and the time duration for each bunch train is 𝑇௧௥, 
so 𝑇଴ ൌ 𝐾𝑇௧௥. Each bunch train consists of 𝑀଴ evenly-
spaced bunch slots with a bunch spacing 𝑇஻, or 𝑇௧௥ ൌ  𝑀଴𝑇஻.  In the even-fill scenario, the total number of 
bunches in the ring is 𝑀 ൌ 𝐾𝑀଴, and the bunch repetition 
rate is 𝑓௥௘௣ ൌ 𝑇஻ି ଵ with 𝜔஻ ൌ 2𝜋𝑓௥௘௣. For this study, we are 
interested in the case when only the first 𝑁଴ slots in each 
bunch train are filled with bunches of equal bunch charge, 
followed by 𝑁௚ ൌ ሺ𝑀଴ െ 𝑁଴ሻ slots of missing bunches, as 
illustrated in Fig. 1.  The time duration in each bunch train 
filled by the bunches is 𝑇௙௜௟௟ ൌ 𝑁଴𝑇஻. and the filling factor 
is  𝛼 ൌ 𝑇௙௜௟௟ 𝑇௧௥⁄ ൌ 𝑁଴ 𝑀଴⁄ ,  

the repetition rate for bunch trains is 𝑓௧௥ ൌ 𝑇௧௥ିଵ with 𝜔௧௥ ൌ  2𝜋𝑓௧௥ .  

Figure 1: Bunch distribution pattern for four bunch trains 
(𝐾 ൌ 4ሻ in a ring. 

 Let the normalized density distribution for each bunch 
be 𝜆ሺ𝑡ሻ. For the rms bunch length 𝜎௧ much shorter than the 
bunch spacing, 𝜎௧ ≪  𝑇஻,  we have ׬ 𝜆ሺ𝑡ሻ𝑑𝑡ಳ் ଶ⁄ି ಳ் ଶ⁄  ൎ ׬ 𝜆ሺ𝑡ሻ𝑑𝑡 ൌ 1ஶିஶ . 

 For an uneven-fill beam distribution pattern, as depicted 
in Fig. 1, the density distribution function 𝐹ሺ𝑡ሻ is a periodic 
function 𝐹ሺ𝑡ሻ ൌ ෍ ෍ 𝜆ሺ𝑡 െ 𝑇஻ 2 െ 𝑛⁄ 𝑇஻ െ 𝑘𝑇௧௥ሻேబିଵ

௡ୀ଴
௄ିଵ
௞ୀ଴ , 

with periodic condition 𝐹ሺ𝑡ሻ ൌ 𝐹ሺ𝑡 ൅ 𝑇଴ሻ and normaliza-
tion ׬ 𝐹ሺ𝑡ሻ𝑑𝑡 ൌ 𝛼బ்଴ 𝑀. For 𝑁௕ number of charged parti-
cles (with unit charge 𝑒ሻ in each bunch, the total beam cur-
rent is  𝐼ሺ𝑡ሻ ൌ 𝑒 𝑁௕ 𝐹ሺ𝑡ሻ, and the average beam current is 

   𝐼௔௩௘ ൌ 𝑒𝛼 𝑁௕/𝑇஻. 

 We can view 𝐹ሺ𝑡ሻ as the product of an evenly-distributed 
periodic bunch distribution 𝐸ሺ𝑡ሻ and an evenly-distributed 
periodic rectangular function  𝑅ሺ𝑡ሻ 

 ___________________________________________  

* This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics under contract DE-
AC05-06OR23177.
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   𝐹ሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ ∙ 𝑅ሺ𝑡ሻ                              (1) 
with 
 𝐸ሺ𝑡ሻ ൌ ∑ 𝜆ሺ𝑡 െ 𝑇஻ 2 െ𝑚⁄ 𝑇஻ሻெబିଵ௠ୀ଴ ,                    (2)               𝑅ሺ𝑡ሻ ൌ ∑ 𝑅଴൫𝑡 െ 𝑇௙௜௟௟ 2 െ𝑚⁄ 𝑇௧௥൯௄బିଵ௞ୀ଴ ,                 (3) 
 

and 
 𝐸ሺ𝑡ሻ ൌ 𝐸ሺ𝑡 ൅ 𝑇଴ሻ, 𝑅ሺ𝑡ሻ ൌ 𝑅ሺ𝑡 ൅ 𝑇଴ሻ. 
 

Here 𝑅଴ሺ𝑡ሻ is the basic rectangular function describing a 
bunch train 𝑅଴ሺ𝑡ሻ ൌ ቊ1                   ሺ|𝑡| ൏ 𝑇௙௜௟௟ 2⁄ ሻ0   ൫𝑇௙௜௟௟ 2⁄ ൑ |𝑡| ൑ 𝑇௧௥ 2⁄ ൯, 
 

as illustrated in Fig. 2. For a single bunch train in the ring, 𝐾 ൌ 1, Eq. (1) is illustrated in Fig. 3. 
 

 
Figure 2: Basic rectangle function. 

 

 
Figure 3: Illustration of a bunch train with one gap in a ring. 
 

     Define the Fourier transform of a function 𝑔ሺ𝑡ሻ as 
       𝑔ሺ𝑡ሻ ൌ ଵଶగ ׬ 𝑔෤ሺ𝜔ሻ𝑒ି௜ఠ௧𝑑𝜔,   ஶିஶ 𝑔෤ሺ𝜔ሻ ൌ ׬ 𝑔ሺ𝑡ሻ𝑒௜ఠ௧𝑑𝑡,ஶିஶ   
 

and let the Fourier spectra for 𝐸ሺ𝑡ሻ and 𝑅ሺ𝑡ሻ be  𝐸෨ሺ𝜔ሻ and 𝑅෨ሺ𝜔ሻ respectively. The Fourier spectrum for their product 𝐹ሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ𝑅ሺ𝑡ሻ is then 
 𝐹෨ሺ𝜔ሻ ൌ ଵଶగ ׬ 𝐸෨ሺ𝜔′ሻ𝑅෨ሺ𝜔 െ 𝜔′ሻ𝑑𝜔′ .  ஶିஶ               (4) 

FOURIER SPECTRUM 
 Next, we give the expression of 𝐹෨ሺ𝜔ሻ in Eq. (4) by first 
analyzing 𝐸෨ሺ𝜔ሻ and 𝑅෨ሺ𝜔ሻ respectively. 
 For an even fill of M bunches in the ring, the distribution 
function 𝐸ሺ𝑡ሻ in Eq. (2) can be written as a convolution of 
the single bunch distribution function 𝜆ሺ𝑡ሻ and a periodic 
function 𝑠ாሺ𝑡ሻ of 𝛿-summation 
 𝐸ሺ𝑡ሻ ൌ ׬ 𝑑𝑡ᇱ𝜆ሺ𝑡 െ 𝑡ᇱሻ𝑠ாሺ𝑡ᇱ െ 𝑡ாሻబ்଴ ,                   (5) 
 
with time shift 𝑡ா ൌ 𝑇஻ 2⁄ , and 
 
  𝑠ாሺ𝑡ሻ ൌ ∑ 𝛿ሺ𝑡 െ 𝑚𝑇஻ሻ,      𝑠ாሺ𝑡ሻ ൌ 𝑠ாሺ𝑡 ൅ 𝑇଴ሻ.  ெିଵ௠ୀ଴  
 
By writing 𝑠ாሺ𝑡ሻ in the form of Dirac-comb function in the 
time domain 𝑠ாሺ𝑡ሻ ൌ ෍ ෍ 𝛿ሺ𝑡 െ 𝑚𝑇஻ െ 𝑛ெିଵ

௠ୀ଴
ஶ

௡ୀିஶ 𝑇଴ሻ, 
one gets its Fourier spectrum as a Dirac-comb function in 
the frequency domain 
 

             �̃�ாሺ𝜔ሻ ൌ 𝜔஻ ∑ 𝛿ሺ𝜔 െ 𝑝𝜔஻ሻஶ௣ୀିஶ . 
 

We then have  

 

  𝐸෨ሺ𝜔ሻ ൌ 𝜆ሚሺ𝜔ሻ𝜔஻ ∑ ሺെሻ௣𝛿ሺ𝜔 െ 𝑝𝜔஻ஶ௣ୀିஶ ሻ.           (6) 
 

For a Gaussian distribution 𝜆ሺ𝑡ሻ ൌ 𝑒ି௧మ ଶఙ೟మൗ , its Fourier 
spectrum is  𝜆ሚሺ𝜔ሻ ൌ  𝑒ିఠమఙ೟మ ଶ⁄ .  

Similar to 𝐸ሺ𝑡ሻ, the periodic rectangular bunch-train 
function 𝑅ሺ𝑡ሻ in Eq. (3) can be written as 

 𝑅ሺ𝑡ሻ ൌ න 𝑑𝑡ᇱ𝑅଴ሺ𝑡 െ 𝑡ᇱሻ𝑠ோሺ𝑡ᇱ െ 𝑡ோሻబ்
଴                             (7) 

 

with 𝑡ோ ൌ 𝑇௙௜௟௟ 2⁄ , and  
 𝑠ோሺ𝑡ሻ ൌ ෍𝛿ሺ𝑡 െ 𝑘𝑇௧௥ሻ,      𝑠ோሺ𝑡ሻ ൌ 𝑠ோሺ𝑡 ൅ 𝑇଴ሻ.  ௄ିଵ

௞ୀ଴  

 

This periodic 𝛿-summation can be written as a Dirac-comb 
in the time domain 𝑠ோሺ𝑡ሻ ൌ ෍ ෍𝛿ሺ𝑡 െ 𝑘𝑇௧௥ െ 𝑛௄ିଵ

௞ୀ଴
ஶ

௡ୀିஶ 𝑇଴ሻ, 
 
and its Fourier transform is  �̃�ோሺ𝜔ሻ ൌ 𝜔௧௥ ෍ 𝛿ሺ𝜔 െ 𝑙𝜔௧௥ሻஶ

௣ୀିஶ . 
 

The Fourier spectrum of 𝑅ሺ𝑡ሻ is then 
           𝑅෨ሺ𝜔ሻ ൌ 𝑅෨଴ሺ𝜔ሻ𝜔௧௥ ∑ 𝑒ି௜ఈ௟గ𝛿ሺ𝜔 െ 𝑙𝜔௧௥ஶ௟ୀିஶ ሻ          (8)   
 

with 𝑅෨଴ሺ𝜔ሻ ൌ ଶఠ sin ቀఠ்೑೔೗೗ଶ ቁ. 
  

  The final beam current spectrum for Iሺ𝑡ሻ ൌ 𝑒 𝑁௕ 𝐹ሺ𝑡ሻ is 
obtained from Eqs. (4), (6), and (8),  
                     𝐼ሚሺ𝜔ሻ ൌ ෍ ෍ 𝐽ሺ𝑝, 𝑙ሻ𝛿ሺ𝜔 െ 𝑝𝜔஻ െ 𝑙𝜔௧௥ሻ,ஶ

௟ୀିஶ
ஶ

௣ୀିஶ    
for  

   𝐽ሺ𝑝, 𝑙ሻ ൌ ሺെሻ௣𝜆ሺ𝑝𝜔஻ሻ sincሺ𝛼𝑙𝜋ሻ 𝑒ି௜ఈ௟గ            (9) 
 

with  
             sincሺ𝑥ሻ ൌ sin ሺ𝑥ሻ 𝑥⁄ . 
 

 For 𝑓 ൌ 𝜔 2𝜋⁄  as an independent variable, the normal-
ized current spectral amplitude is  
 

          𝐺ሺ𝑓ሻ ൌ ห𝐼ሚሺ𝑓ሻห 𝐼௔௩௘⁄ . 
 

Note there are 𝑙௠௔௫ ൌ 𝑀 𝐾⁄  number of sidebands in be-
tween the adjacent harmonics of the bunch repetition rate. 
Let's look at the l-th side band next to the p-th harmonic. 
For each 𝑙 between 𝑙 ൌ 0 and 𝑙௠௔௫ െ 1 , the current spec-
trum is composed of the sidebands from all the harmonics 
away from the p-th harmonic, i.e., the (l-qlmax)-th sideband 
of the (p+q)-th harmonic for the q-th harmonic away from 
the p-th harmonic for all q ሺെ∞ ൏ 𝑞 ൏ ∞ሻ. This can be 
seen from 
 𝐺ሺ𝑓ሻ ൌ ∑ ∑ 𝐻ሺ𝑝, 𝑙ሻ𝛿൫𝑓 െ 𝑝𝑓௥௘௣ െ 𝑙𝑓௧௥൯,   ௟೘ೌೣିଵ௟ୀ଴ஶ௣ୀିஶ  (10) 
 
with   𝐻ሺ𝑝, 𝑙ሻ ൌ ห∑ 𝐽ሺ𝑝 ൅ 1, 𝑙 െ 𝑞𝑙௠௔௫ሻஶ௤ୀିஶ ห. 
 
      Let us denote the weight function for the amplitude of 
the 𝑙-th sideband of the 𝑝-th harmonic in Eq. (9) be 𝑤ሺ𝑙ሻ: 
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     𝑤ሺ𝑙ሻ ൌ sincሺ𝛼𝑙𝜋ሻ, 
 

then the normalized spectral amplitude for all the side-
bands of the 𝑝-th harmonic is 
 𝐺଴ሺ𝑝,𝑓ሻ ൌ ෍ |𝐽ሺ𝑝, 𝑙ሻ|ஶ

௟ୀିஶ 𝛿൫𝑓 െ 𝑝𝑓௥௘௣ െ 𝑙𝑓௧௥൯,                 (11) 
 

for |𝐽ሺ𝑝, 𝑙ሻ| ൌ 𝜆൫2𝜋𝑝𝑓௥௘௣൯ 𝑤ሺ𝑙ሻ. Examining the behavior 
of  𝑤ሺ𝑙ሻ  and 𝐺଴ሺ𝑝, 𝑓ሻ can help us better understand the 
final current spectrum 𝐺ሺ𝑓ሻ in Eq. (10) for the uneven 
bunch fill. 
     For an even-fill pattern, we have 𝛼 ൌ 1 and sincሺ𝛼𝑙𝜋ሻ ൌ 𝛿ሺ𝑙ሻ. Hence Eq. (10) is reduced to the famil-
iar result  
 

   𝐺ሺ𝑓ሻ ൌ ∑ 𝜆ሚ൫2𝜋𝑝𝑓௥௘௣൯ஶ௣ୀିஶ 𝛿ሺ𝑓 െ 𝑝𝑓௥௘௣ሻ.            (12) 

BEHAVIOR OF SPECTRUM AMPLITUDE 
 To examine the behavior of the normalized current spec-
tral amplitude and its dependence on the filling pattern, we 
consider the case of a bunch distribution pattern in the 
JLEIC electron ring [9], with circumference C = 2366 m 
and 𝑓௥௘௣ ൌ 476.3 MHz. First, for an even bunch fill of 
Gaussian bunches, 𝑀଴ ൌ 3759 and 𝜎௭ ൌ 9 mm, Fig. 4 
shows how 𝜆ሚሺ𝜔ሻis sampled at harmonics of bunch repeti-
tion rate.  

     
Figure 4: Normalized current spectrum for an even-fill. 

 We then computed the cases of a single bunch train 
(K = 1) with gap sizes 𝑁௚ ൌ 1 and 𝑁௚ ൌ 267, the latter being 
the JLEIC design value. Figure 5 shows how each har-
monic of the bunch repetition rate in Fig. 4 is surrounded 
by a plethora of sidebands at harmonics of the bunch-train 
repetition rate, with the weight function 𝑤ሺ𝑙ሻ for each side-
band.  Here the weight function 𝑤ሺ𝑙ሻ is plotted as a contin-
uous function of  𝑙 (green curves) and as a discrete function 
of 𝑙  (red dots), respectively.  It is clear that, as the 𝛼 value 
moves further away from unity, the plethora of sidebands 
around each harmonic exhibits a more intricate behavior.   

 
Figure 5: 𝑤ሺ𝑙ሻ for (a) 𝑁௚ ൌ 1 and (b) 𝑁௚ ൌ 267. 

 

 Next, the function 𝐺଴ሺ𝑝, 𝑓ሻ in Eq. (11) is plotted in Fig. 6 
for a range of harmonic numbers 𝑝. These functions show 
that as the gap size increases, or the filling factor decreases, 
the sideband structure adjacent to each harmonic of the 
bunch repetition rate becomes denser and more compli-
cated. Notice how the sidebands for each harmonic of the 
bunch repetition rate penetrate to adjacent harmonics.  

 
 Figure 6: 𝐺଴ሺ𝑝,𝑓ሻ for (a) 𝑁௚ ൌ 1 and (b) 𝑁௚ ൌ 267. 
 

 The final normalized current spectral amplitude in 
Eq. (10) is plotted in Fig. 7 for the two cases of interest, 
which accounts for the interference of sidebands from dif-
ferent harmonics. These analytical results are in good 
agreement with their counterparts in Fig. 8 obtained from 
numerical DFT calculations.  

  
Figure 7: 𝐺ሺ𝑓ሻ for (a) 𝑁௚ ൌ 1 and (b) 𝑁௚ ൌ 267. 

 

   
Figure 8: Numerical results of discrete Fourier transforms 
for the analytical cases shown in Fig. 7. 
 

 Our last example is the current spectrum for the EIC de-
sign [10], with a filling pattern of a bunch train of 
1160 Gaussian bunches (𝜎௭ ൌ 7 mm) followed by a gap of 
100 bunch spacing. Good agreement of our analytical re-
sult of the normalized current spectral amplitude for EIC 
and its direct DFT result is given in Fig. 9. 
 
 

  
Figure 9: Current spectral amplitude for the EIC de-
sign: (a) analytical results, (b) results from direct DFT. 

CONCLUSION 
 In this study, we analyze the beam-current spectrum for 
uneven fill patterns and illustrate their behavior using the 
JLEIC and EIC parameters as examples. The dependence 
of the current-spectra amplitude on the gap length is 
shown, and the intricate features of sideband s and their 
interference are discussed. Comparisons between the ana-
lytical results and the direct numerical discrete Fourier 
transform yields good agreement. Our analytical result 
agrees well with the results in Ref. [6] for the special filling 
pattern of bunch trains with constant bunch charge fol-
lowed by gaps. Future applications of these results in the 
study of coupled-bunch instabilities are envisioned. 
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