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Abstract
Hysteresis effects in magnetic elements are often approxi-

mated by simple linear relationships between applied current
and magnetization when conducting accelerator operations.
However, with increasingly difficult operational targets for
the next generation of accelerators, deviations from this ap-
proximation due to hysteresis cannot be neglected. Further-
more, experimental models used in accelerator control algo-
rithms must also take hysteresis effects into account when
predicting beam properties. Here we present initial work
on incorporating hysteresis effects into Bayesian statistical
models that eventually will be applied to online accelerator
optimization. We treat the hysteresis cycle of accelerator
elements as a latent, unobserved variable that is learned
via Bayesian techniques using observations of the beam re-
sponse. As a result, the hysteresis behavior of any magnetic
element can be determined without directly measuring the
magnetic field. The methodology used here can be extended
to modeling any system that has hysteresis-like behavior,
like backlash in mechanical actuators or forces exerted by
elastic components.

INTRODUCTION
Hysteresis is the process by which the magnetization of

magnetic elements exhibit non-linear behavior in response
to external magnetic fields [1]. The magnetization depends
not only the external magnetic field created by current car-
rying wires surrounding a magnetizable material, but also
on the history of external fields. As a result, if the external
magnetic field is cycled, the magnetization will not return
to the original state. This complicates the process of mod-
eling the beam response as a function of currents applied
to magnetic accelerator elements as the beam behavior is
now dependant not only on the current set point, but also
on historical parameter states as well. Accelerator operators
generally avoid these effects by staying in a limited parameter
regime, where the magnetic response can be approximated
by a linear fit that neglects errors due to previous parameter
states. As beam quality and control targets become more
challenging, errors due to hysteresis effects can no longer
be ignored. Furthermore, if we wish to allow algorithms to
assist in optimizing accelerator parameters, the models these
algorithms use need to jointly learn the hysteresis behavior
as well as the beam response.

One such method for surrogate-assisted beamline opti-
mization is Bayesian optimization (BO) [2]. This black-box
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optimization algorithm uses a Bayesian statistical model of
a target function (such as the transverse rms. beam size), to
predicts the mean and uncertainty of any future measure-
ment. The model is combined with an acquisition function,
that predicts the value gained from any particular observa-
tion. A simple acquisition function for optimization is Upper
Confidence Bound [3] which strategically chooses observa-
tions that balance the trade-off between taking advantage
of previously observed extrema (exploitation) and reducing
the uncertainty of the overall model (exploration). However,
normal Bayesian optimization frameworks cannot account
for systems that exhibit hysteresis behavior as they assume a
one-to-one relationship between input parameters and output
observations. A potential way to circumvent this limitation
is to directly measure the magnetization of each accelerator
element in situ via the nearby magnetic field. However, this
can be prohibitively expensive to do for large numbers of
elements.

Here we present a joint Bayesian model that represents
both the hysteresis process as well as the beam response
to the resulting magnetic fields. This is achieved without
measuring the magnetization directly. Instead we measure
the beam properties downstream of the magnetic element
and estimate the hysteresis model parameters by maximizing
the log likelihood function.

JOINT HYSTERESIS-BAYESIAN MODELS

The joint statistical model for a single magnetic element
is described as follows. The first part of the model maps
the external field at some time step �C and the history of
external fields �0:C−1 to the resulting bulk magnetization
"C . The second part of the model contains a Gaussian pro-
cess [4] Bayesian model than maps the magnetization to a
beam property, which for simplicity, we choose to be the
transverse beam size fG . Both of these sub-models contain
free parameters that we estimate by maximizing the marginal
log likelihood of the data set containing our observable mea-
surements G0:C = {(�0, f0), (�1, f1), . . . , (�C , fC )}.

The magnetization at a given time step is modeled via the
Preisach model of hysteresis [5]. This model describes the
total magnetization as a sum of many “hysterions", which
can have values of either +1 or -1 as shown in Fig. 1(a), cor-
responding to alignment or anti-alignment with the external
field respectively. Each hysterion has two associated proper-
ties, V which describes the external positive field magnitude
required to flip the hysterion from the -1 state to +1 and U
which describes the external negative field that is required to
do the opposite. The total magnetization is given by a sum
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of 8’th elements

" (H0:C ) =
∑
8

<8 (H0:C ; V8 , U8). (1)

We can extend this sum of discrete hysterions to a continuum,
where the number of hysterions with a given (V, U) is defined
by `(V, U), shown in Fig. 1(b). The hysterion density is
non-zero in a triangular region bounded by the line U = V as
U < V is non-physical, and two limits that define the fields
required for positive U = U< and negative V = V< saturation
of the bulk material. To calculate the magnetization as a
function of external field we split the valid domain into two
sub-domains (+ and (−which corresponds to the hysterions
that have a +1 and −1 value respectively. The equation for
the magnetization thus becomes

" (H0:C ) =
∫
(+
`(V, U)3V3U −

∫
(−
`(V, U)3V3U. (2)

An iterative procedure is used to determine the regions
(+, (− based on the historical record of external fields H0:C .
We assume that �0 < V<, such that the (− sub-domain
is the entire valid region. If the external magnetic field is
increased (Δ�B = �B − �B−1 > 0, where B = 1, 2, . . . C)
then a horizontal line is swept upwards to the final external
magnetic field strength. Any regions below this horizontal
line are added to the (+ sub-domain and removed from
the (− sub-domain. If the external magnetic field is then
decreased (Δ�B), a vertical line is swept from right to left
to the final external field value, flipping any regions to the
right of this line back to the (− domain. This procedure is
repeated for each intermediate step B until B = C, resulting in
sub-domains similar to those shown in Fig. 1(c). With these
sub-domains defined, the remaining task is to determine the
hysterion density `(V, U). In this case we use a bivariate
Gaussian density function with a diagonal sigma matrix
� = diag(;1, ;2) and centered at the origin. The parameters
;1, ;2 will be estimated inside the joint model.

To describe the beam response as a function of the
magnetization 5 (") we use a non-parametric Gaussian
process model that is specified by a covariance function,
: (", " ′; \) with hyperparameters \ and a zero mean func-
tion so that we can write 5 (") ∼ GP(0, : (", " ′)). In
an experimental setting the observed beam response H is
corrupted by noise: H = 5 (") + n where we assume that
n ∼ N(0, f2

=>8B4
). Given previous measurements D0:C =

{("0, H0), ("1, H1), . . . , ("C , HC )} the predictive probabil-
ity distribution for the function value 5C+1 = 5 ("C+1) is
given by

%( 5C+1 |D0:C , "C+1) = N(`("C+1), f2 ("C+1)), (3)

Figure 1: (Color online) Cartoon showing the elements of the
Preisach hysteresis model. (a) Function of a single hysterion.
(b) Hysterion density on the V−U plane. (c) (+ and (− sub-
domains after three time steps, where �1 > �3 > �2 > V<.

where

`("C+1) = k) [ + f2
=>8B4 �]−1y0:C (4)

f("C+1) = : ("C+1, "C+1) − k) [ + f2
=>8B4 �]−1k (5)

k = [: ("C+1, "0), . . . , : ("C+1, "C )]) (6)

 =


: ("0, "0) · · · : ("0, "C )

...
. . .

...

: ("C , "0) · · · : ("C , "C )

 . (7)

The hyperparameters are determined by maxi-
mizing the log marginal likelihood, \, f=>8B4 =

argmax\,f=>8B4
log[?(�0:C ; \, f=>8B4)], which balances

model accuracy and complexity when choosing hyperparam-
eters. However, since the magnetization M0:C is unknown,
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we also need to maximize the marginal log likelihood with
respect to the hysteresis density parameters conditioned on
the observable data set G0,C . As a result, our goal is to find

argmax\,f=>8B4 ,;1 ,;2
log[?(�0:C ; \, f=>8B4, ;1, ;2)] . (8)

We implemented the Preisach model in PyTorch [6] and
the Gaussian process model in GPyTorch [7] which both
have auto-gradient functionality, which tracks derivative
information during calculations, and allows gradient descent
based algorithms to be used to optimize the marginal log-
likelihood.

TOY MODEL RESULTS
We evaluated the effectiveness of this modeling strategy

by using it to fit a toy hysteresis model. We created a magnet
model with the hysterion density `(V, U) given by a multi-
variate Gaussian centered at the origin and with a covariance
matrix given by� = diag((0.25, 1.5)). The positive and neg-
ative magnetization saturation levels were set to +1 and −1
respectively. We specified external magnetic field strengths
over C = 20 steps given by �C = −1.05 cos(2cC/25) and
recorded the magnetization "C . The beam size response to
the magnetization was specified to be 5 (") = (" − 0.25)2
and the noise parameter was set to f=>8B4 = 0.1. We used
a radial basis kernel (RBF) which contained the hyperpa-
rameters \ = {�, _} where � is the scale factor and _ is
the length scale. Results from this calculation are shown
in Figs. 2(a) and (b). We then used the external field and
beam size data sets to train the joint model. The Adam gra-
dient descent algorithm was used to maximize the marginal
log likelihood with respect to the hysteresis and Gaussian
process parameters. The estimated hysterion density had a
covariance matrix of � = diag((0.29, 1.3)) which closely
matches the ground truth. The Gaussian process kernel func-
tion had a length scale _ = 1.67 and a scale factor of � = 3.1.
Predictions from this model are shown in Fig. 2.

From these results, we see that the hybrid model shows
reasonable accuracy when jointly modeling both the hys-
teresis process and the beam response. Comparisons to the
ground truth of both the magnetization (Fig. 2(a)) and the
beam response (Fig. 2(c)) as a function of the next external
field show good agreement. This includes non-smooth be-
havior as seen in Fig. 2(c), since we explicitly account for
hysteresis effects in our model. We also see that the joint
model accurately predicts the shift in external field �C+1 that
results in a minimum beam size, relative to when hysteresis
effects are ignored (“hysteresis off case”).

CONCLUSION
Here we have introduced a method for simultaneously

fitting the hysteresis behavior of a magnetic accelerator el-
ement and the beam response to that magnet using a joint
Gaussian process based model. Next steps for this work are
to experimentally demonstrate this measurement and also
to integrate this method into an existing accelerator control
system for optimization.

Figure 2: (Color online) Analysis of toy hysteresis model.
(a) The historical hysteresis curve of the toy model over 20
steps " (�0:C ) along with the ground truth and predicted
magnetization as a function of the next external field �C+1.
(b) Latent space representation of beam size as a function of
magnetization showing historical samples and model predic-
tion. (c) Beam size as a function of next external field, �C+1
comparing model predictions to the ground truth as well as
the case where hysteresis effects are neglected (" = �C+1).
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