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Abstract

The well-known K-V distribution provides an exact solu-
tion of the self-consistent Vlasov-Poisson system describing
an unbunched charged particle beam with nonzero temper-
ature in the presence of time-dependent linear transverse
focusing. We describe a lesser-known exact solution of the
Vlasov-Poisson system that is based on the work of Kurth
in stellar dynamics. Unlike the K-V distribution, the Kurth
distribution is a true function of the phase space variables,
and the solution may be constructed on either the 4D or
6D phase space, for the special case of isotropic linear fo-
cusing. Numerical studies are performed for benchmarking
simulation codes, and the stability properties of a 4D Kurth
distribution are compared with those of a K-V distribution.

INTRODUCTION

The K-V distribution [1] has played a central role in under-
standing the self-consistent dynamics of beams with space
charge in linacs and storage rings. However, the K-V dis-
tribution is not a true function (but a measure concentrated
on an ellipsoidal hypershell), and it is sensitive to a range
of well-studied collective instabilities. In addition, the K-V
construction of producing linear forces by using a delta func-
tion in a single invariant of motion cannot be generalized
from 4D to 6D [2].

Exact solutions of the (gravitational) Vlasov-Poisson sys-
tem are well-known in stellar dynamics. These solutions
are generally 6D and invariant under rotations of the spatial
and momentum variables (isotropic), providing additional
invariants of motion. One such exact solution for a galaxy
confined by linear self-forces developed by Kurth [3] allows
for both steady-state and oscillating solutions. It appears to
be widely used in the stellar dynamics community [4].

With minor changes to allow for time-dependent linear
external focusing, the Kurth solution can be adapted to treat
the case of charged-particle beams in either 4D or 6D. In-
deed, this distribution may be interpreted as a special case
of [5]. The Kurth distribution can be a valuable tool for
benchmarking treatments of time-dependent 2D or 3D space
charge. We summarize the theory of this distribution, and
illustrate numerical studies comparing its stability properties
with those of a K-V beam.
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KURTH DISTRIBUTION
Unbunched Beam (4D)

The Hamiltonian for a long coasting beam with axially-
symmetric linear external focusing, with 𝑠 as the indepen-
dent variable, and with momenta normalized to the design
momentum 𝑝0 = 𝑚𝑐𝛽𝛾 is given by:

𝐻(𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑠) = 1
2(𝑝2

𝑥 +𝑝2
𝑦)+ 1

2Ω(𝑠)2(𝑥2 +𝑦2)+Φ. (1)

Here Φ denotes the 2D space charge potential:

Φ(𝑥, 𝑦, 𝑠) = 𝑞𝜙(𝑥, 𝑦, 𝑠)
𝛽2𝛾3𝑚𝑐2 , ∇2

⟂𝜙 = − 𝜌
𝜖0

. (2)

Let 𝑅 be any solution of the 2D envelope equation:

𝑅″(𝑠) + Ω(𝑠)2𝑅(𝑠) −
𝐾𝑝𝑣
𝑅(𝑠) − 𝜖2

𝑅(𝑠)3 = 0, (3)

where 𝐾𝑝𝑣 is the generalized perveance and 𝜖 > 0 denotes
the beam edge emittance. In terms of the dimensionless
coordinates:

𝑥𝑁 = 𝑥/𝑅(𝑠), 𝑝𝑥𝑁 = [𝑅(𝑠)𝑝𝑥 − 𝑅′(𝑠)𝑥]/𝜖, (4a)
𝑦𝑁 = 𝑦/𝑅(𝑠), 𝑝𝑦𝑁 = [𝑅(𝑠)𝑝𝑦 − 𝑅′(𝑠)𝑦]/𝜖, (4b)

define the quantities:

𝐸 = 1
2(𝑝2

𝑥𝑁 + 𝑝2
𝑦𝑁 + 𝑥2

𝑁 + 𝑦2
𝑁), (5a)

𝐿𝑧 = 𝑥𝑁𝑝𝑦𝑁 − 𝑦𝑁𝑝𝑥𝑁. (5b)

The Kurth distribution then takes the form:

𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑠) = 1
2𝜋2𝜖2 (1 − 2𝐸 + 𝐿2

𝑧 )−1/2
+ , |𝐿𝑧| < 1

(6)
where 𝑓 is taken to vanish if the quantity in brackets is neg-
ative or if |𝐿𝑧| ≥ 1. After integrating over momenta, one
finds that the 2D spatial density is uniform within a disk of
radius 𝑅, so that the space charge fields are linear, and the
rms emittance is given by:

𝜖𝑥,𝑟𝑚𝑠 = 𝜖𝑦,𝑟𝑚𝑠 = 𝜖
4 . (7)

Although the distribution (6) is expressed using 𝐿𝑧, 𝑓 in fact
has zero mean angular momentum, ⟨𝐿𝑧⟩ = 0.

One may verify using (1) and (3) that the quantities (5) are
invariants of the single-particle motion. It follows that (6) is
a self-consistent solution of the Vlasov-Poisson system:

𝜕𝑓
𝜕𝑠 + {𝑓 , 𝐻} = 0, ∇2Φ = −2𝜋𝐾𝑝𝑣 ∫ 𝑓 𝑑𝑝𝑥𝑑𝑝𝑦.
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The distribution (6) may be compared with that of a K-V
beam with the same second moments:

𝑓𝐾𝑉(𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑠) = 1
𝜋2𝜖2 𝛿 (1 − 2𝐸) . (8)

Like the K-V beam, the 2D projections 𝑋 −𝑌, 𝑃𝑥−𝑃𝑦, 𝑋 −𝑃𝑥,
and 𝑌 − 𝑃𝑦 of (6) are uniformly-filled ellipses. However, the
coordinates 𝑋, 𝑃𝑦 are statistically independent, as are 𝑌, 𝑃𝑥.

Bunched Beam (6D)
The Hamiltonian for a bunched beam with spherically-

symmetric linear external focusing, with 𝜏 = 𝑐𝑡 as the inde-
pendent variable, and with momenta normalized by 𝑚𝑐 is
given by:

𝐻(𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝑝𝑧, 𝜏) = 1
2 |p|2 + 1

2Ω(𝜏)2|r|2 + Φ, (9)

where r = (𝑥, 𝑦, 𝑧), p = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧), and Φ denotes the 3D
space charge potential:

Φ(𝑥, 𝑦, 𝑧, 𝜏) = 𝑞𝜙(𝑥, 𝑦, 𝑧, 𝜏)
𝑚𝑐2 , ∇2𝜙 = − 𝜌

𝜖0
. (10)

Let 𝑅 be any solution of the 3D envelope equation:

𝑅″(𝜏) + Ω(𝜏)2𝑅(𝜏) − 𝑟𝑐𝑁
𝑅(𝜏)2 − 𝜖2

𝑅(𝜏)3 = 0, (11)

where 𝑟𝑐 denotes the classical particle radius, 𝑁 denotes the
bunch population, and 𝜖 > 0 is a 3D edge emittance. In
terms of dimensionless coordinates:

r𝑁 = r/𝑅(𝑠), p𝑁 = [𝑅(𝑠)p − 𝑅′(𝑠)r]/𝜖, (12)

define the quantities:

𝐸 = 1
2(|p𝑁|2 + |r𝑁|2), 𝐿 = |r𝑁 × p𝑁|. (13)

The Kurth distribution is given by:

𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝑝𝑧, 𝜏) = 3
4𝜋3𝜖3 (1 − 2𝐸 + 𝐿2)−1/2

+ , 𝐿 < 1
(14)

After integrating over momenta, one finds that the 3D spatial
density is uniform within a ball of radius 𝑅, so that the space
charge fields are linear, and the rms emittance is given by:

𝜖𝑥,𝑟𝑚𝑠 = 𝜖𝑦,𝑟𝑚𝑠 = 𝜖𝑧,𝑟𝑚𝑠 = 𝜖
5 . (15)

Although the distribution (14) is expressed using 𝐿, 𝑓 in fact
has zero mean angular momentum about each axis.

One may verify using (9) and (11) that the quantities
(13) are invariants of the single-particle motion. It follows
that (14) is a self-consistent solution of the Vlasov-Poisson
system:

𝜕𝑓
𝜕𝜏 + {𝑓 , 𝐻} = 0, ∇2Φ = −4𝜋𝑟𝑐𝑁 ∫ 𝑓 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧.

Although Kurth’s original paper focused on the gravitational
6D case (without external focusing), the numerical studies
below focus on the 4D case.

NUMERICAL STUDIES
Consider a 200 MeV unbunched (4D) proton beam with

an edge emittance of 𝜖 = 10.14 mm-mrad and a current of
𝐼 = 20 A. Simulations in a linear focusing channel were
performed using a 1D Poisson solver based on Gauss’ law
and particle sorting (assuming symmetry about the axis of
motion), where 100K particles were used. Similar results
were obtained using a 2D spectral Poisson solver.

Breathing Beam in a Constant Focusing Channel
External focusing (corresponding to 𝐵 = 2.7 T) was

chosen to produce a space charge tune depression ratio of
𝜔/𝜔0 = 0.74. To introduce nontrivial 𝑠-dependence, the
initial beam size was mismatched by 10%. (See Fig. 1.) The
uniformity of the spatial distribution of the Kurth beam is
well-preserved over 450 envelope periods.

Since both beams experience linear space charge fields,
the beam emittance should be well-preserved. Figure 2
shows the relative emittance growth for both a Kurth and a K-
V distribution. While the emittance fluctuations in the Kurth
beam are consistent with those expected due to numerical
particle noise, the K-V beam shows the onset of an instability
after 60 envelope periods, and the beam develops radial
density waves. This indicates that the two distributions can
exhibit quite different stability behavior.

 
 

200 MeV proton beam 
Focusing:  B=2.7 T 
ε = 10.14 mm-mrad 
20 A current  
 
SC tune depression: 
 
 
 
Initial beam size is 
mismatched by 10%. 

4D Kurth Beam Test, Constant Focusing:  Problem Setup 

100K particles, 1D Gauss’ Law solver - similar results obtained using 2D solvers 

envelope period 
!/!0 = 0.74

Figure 1: One envelope period for a beam in a constant-
focusing channel with 𝜔/𝜔0 = 0.74 and 10% mismatch.

Matched Beam in a Periodic Focusing Channel
To study a system with periodic focusing, we considered

a single period consisting of a drift and a constant focusing
section of equal length. The focusing strength was chosen to
provide an undepressed and a depressed phase advance per
period of 𝜎0 = 84.4∘ and 𝜎 = 47.6∘, respectively, yielding
a tune depression ratio 𝜎/𝜎0 = 0.56. (See Fig. 3.)

Matched Kurth and K-V beams were tracked for 450 lattice
periods, and both beams show relative fluctuations in 𝜖𝑥 and
𝜖𝑦 of < 4×10−4. This stability is reflected in the preservation
of the uniform spatial density, shown in the linear behavior
of the radial profile in Fig. 4 for the Kurth beam.

However, the Kurth beam is not always stable. As a sec-
ond example, we chose the focusing strength to provide an
undepressed and a depressed phase advance per period of
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Mismatched 4D Kurth Beam in a Constant Focusing 
Channel:  Emittance Evolution 

 
 

Differences in the 
details of the initial 
distribution have  
resulted in a 
dramatic difference  
in stability behavior 

Mismatched K-V Beam in a Constant Focusing Channel for 
the Same Parameters:  Emittance Evolution 

Figure 2: Relative emittance growth in the channel of Fig. 1,
corresponding to 𝜖𝑥, 𝜖𝑦, and √𝜖𝑥𝜖𝑦. (Upper) For a Kurth
distribution. (Lower) For a K-V distribution.

 
 

200 MeV proton beam 
Focusing:  B=0 or 1.91 T 
ε = 10.14 mm-mrad 
20 A current  
 
SC tune depression: 
 
 
Beam is rms matched to 
the periodic channel. 
 
Matched beam size is 34% 
larger than zero-current match. 

4D Kurth Beam Test, Periodic Focusing:  Problem Setup 

envelope period 

nonzero focusing 

drift drift 

100K particles, 1D Gauss’ Law solver 

� = 47.6�, �0 = 84.4�

�/�0 = 0.56

Figure 3: One envelope period for a beam in a periodic
channel with 𝜎0 = 84.4∘ and 𝜎 = 47.6∘.

 
 

Distribution is 
well-preserved. 
 
 

Matched 4D Kurth Beam in a Periodic Focusing Channel:  
Radial Profile 

Initial distribution 
After 400 envelope periods 

Figure 4: Radial profile for the Kurth beam before and after
400 periods of tracking, showing that the uniform spatial
density is well-preserved.

 
 

30 

Matched 4D Kurth Beam in a Periodic Focusing Channel:  
Emittance Evolution 

The Kurth beam 
is not always stable. 
 
Tests in progress to 
see how this case 
compares to K-V. 

 
 

32 

Matched K-V Beam in a Periodic Focusing Channel  for the 
Same Problem:  Emittance Evolution 

Emittance is well- 
preserved. 
 
 The K-V beam  
appears stable for  
this problem. 

Figure 5: Relative emittance growth for a Kurth distribution
(upper) and a K-V distribution (lower) in a periodic channel
with 𝜎0 = 125∘ and 𝜎 = 83.8∘.

𝜎0 = 125∘ and 𝜎 = 83.8∘, respectively, yielding a tune
depression ratio 𝜎/𝜎0 = 0.67. The Kurth beam now shows
the onset of an instability after 140 lattice periods (Fig. 5).
In this case, a similar instability does not appear in the K-V
beam.

CONCLUSION
The Kurth distribution is a simple self-consistent solution

of the Vlasov-Poisson system describing an intense beam in
the presence of linear, isotropic 𝑠-dependent focusing. Es-
sentially the same functional form for the distribution is used
in both 4D and 6D. From Eqs. (3) and (11), one may verify
that solutions satisfy the usual rms envelope equations [6].
Numerical simulations were used to verify the preservation
of a Kurth distribution during self-consistent tracking with
space charge. The distribution exhibits instability behavior
distinct from that of a corresponding K-V beam. Future work
is needed to examine the stability properties of the Kurth
distribution in detail.
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