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Abstract 
The Spallation Neutron Source (SNS) at Oak Ridge Na-

tional Laboratory is currently the most powerful accelera-
tor-driven neutron source in the world. The intense proton 
pulses strike on SNS’s mercury target to provide bright 
neutron beams, which also leads to severe fluid-structure 
interactions inside the target. Prediction of resultant load-
ing on the target is difficult particularly when helium gas is 
intentionally injected into mercury to reduce the loading 
and mitigate the pitting damage on the target’s internal 
walls [1, 2]. Leveraging the power of machine learning and 
the measured target strain, we have developed machine 
learning surrogates [3] for modelling the discrepancy be-
tween simulations and experimental strain data. We then 
employ these surrogates to guide the refinement of the 
high-fidelity mercury/helium mixture model to predict a 
better match of target strain response.  

MANUSCRIPTS 
The availability of the first target station (FTS) at the 

spallation neutron source (SNS) centre is mission-critical 
to providing a world-class neutron science program at 
ORNL. However, premature failure of target modules has 
led to several interruptions to the SNS user program, high-
lighting the need for robust target design. This project will 
leverage measured strain data for the target and ML to de-
velop a two-phase constitutive model for mercury/helium 
in extreme environments to predict and extend the lifetime 
of future target designs.  

Target Model and Strain Sensors 
A typical mercury target running at FTS includes the 

solid stainless-steel vessel, and the flowing mercury which 
are illustrated in Fig. 1.  

To reveal the internal structure and the mercury flow, 
Fig. 1 is shown in cut view. The blue and red lines stand 
for flowing mercury from vessel’s inlets to outlet, indicat-
ing a lower temperature of mercury (blue) at the beginning 
and being heated up by the high energy proton pulses at the 
front nose part (red). The flowing mercury takes away most 
of the heat generated by the proton, cooled down outside 
of the vessel to return into the flow loop. Pipes for the in-
jection of helium gas are shown in green lines in Fig. 1, 
which will help reduce the pressure and pitting damage on 
the steel vessel [1, 2]. On the external surface of the steel 
vessel, several strain gages (Fig. 2) are attached to collect 
the response due to the neutron pulses. Measurements from 

these strain sensors help monitor the running status of tar-
get, providing important experimental data for target’s 
modelling and simulations as well. 

 

 
Figure 1: Cut view of mercury Target. 

 

 
Figure 2: Strain sensors attached on Target’s external sur-
face. 

Target Finite Element Simulation 
A half symmetric finite element model, as shown in 

Fig. 3, has been created to simulate the dynamic response 
of mercury Target due to the proton pulse loads. The proton 
energy of each pulse deposits on both the mercury and steel 
parts, being converted into the initial pressure that drives 
the propagation of stress waves internally. Figure 4 illus-
trates the contours of this initial pressure field on steel and 
mercury parts. Obviously, the nose part in the front of tar-
get experiences the most extensive initial proton pulse 
pressure than other locations. 

 ___________________________________________  
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Figure 3: Half symmetric mercury Target model. 

 

 
Figure 4: Initial pressure on mercury and steel vessel. 

 

In the Target’s finite element model, an equation of state 
(EOS) material model is adopted for mercury, with a ten-
sile cut-off value included to represent its cavitation behav-
iour [4]. Figure 5 demonstrates the stress response at the 
specific moment after the proton pulse initiates. The red 
dots in Fig. 5 are selected elements correspond to strain 
sensors in Fig. 2. 

 

 
Figure 5: Demonstration of stress response on vessel. 

Tuning Parameters in Mercury Material Model 
As mentioned before, helium gas is intentionally in-

jected in the mercury flow in SNS mercury Targets, to mit-
igate the pitting damage and reduce the vessel pressure 
therefore to extend target’s lifetime. However, this injected 
helium bubbles lead to more mismatch between measured 
target vessel strain and simulation results by using the tra-
ditional constitutive mercury model introduced in refer-
ence [4]. Figure 6 illustrates this strain discrepancy by 
comparing the model’s sensor strain history (red curve) and 

real strain measurement from sensor (blue curve) at the 
same location. The strain discrepancy also indicates an im-
provement on the mercury material model to include the 
complex bubbles’ behaviour is needed. 

 

 
Figure 6: Strain comparison between model and measure-
ment. 

 

Table 1: Tuning Parameters in Mercury Material Model 

Run# Cut-off 
(Pa) 

Density 
(kg/m3) 

Sound Speed 
(m/s) 

1 1.5517E+06 4.3069E+03 4.8793E+03 
2 3.1035E+06 1.3500E+03 7.9517E+03 
3 6.2069E+06 2.1948E+03 2.4897E+03 
4 1.3966E+07 1.0643E+04 3.8552E+03 
5 9.8276E+06 7.2638E+03 4.5379E+03 
6 2.5862E+06 5.9966E+03 8.6345E+03 
7 1.0000E+01 9.7983E+03 7.2690E+03 
8 1.0345E+06 3.4621E+03 1.1241E+03 
9 1.1379E+07 1.3178E+04 1.4655E+03 
10 1.2414E+07 2.6172E+03 2.8310E+03 
11 1.1897E+07 1.7724E+03 6.5862E+03 
12 5.6897E+06 1.2333E+04 6.9276E+03 
13 4.6552E+06 8.1086E+03 5.5621E+03 
14 1.3448E+07 6.8414E+03 1.8069E+03 
15 7.7586E+06 3.0397E+03 9.6586E+03 
16 7.2414E+06 1.1488E+04 3.5138E+03 
17 4.1379E+06 1.0221E+04 1.0000E+04 
18 8.2759E+06 7.6862E+03 8.2931E+03 
19 1.0345E+07 1.1910E+04 9.3172E+03 
20 1.5000E+07 5.5741E+03 5.2207E+03 
21 1.4483E+07 8.9534E+03 7.6103E+03 
22 6.7241E+06 3.8845E+03 6.2448E+03 
23 8.7931E+06 9.3759E+03 4.4138E+02 
24 1.0862E+07 1.3600E+04 5.9034E+03 
25 3.6207E+06 1.1066E+04 7.8276E+02 
26 5.1724E+06 6.4190E+03 2.1483E+03 
27 5.1725E+05 8.5310E+03 3.1724E+03 
28 2.0690E+06 1.2755E+04 4.1966E+03 
29 1.2931E+07 5.1517E+03 8.9759E+03 
30 9.3103E+06 4.7293E+03 1.0000E+02 
31 1.5000E+07 5.3310E+03 1.0000E+03 
32 1.5000E+07 5.6370E+03 1.5000E+03 
33 0.0000E+00 1.1762E+04 2.2500E+03 
34 1.5000E+07 5.3310E+03 7.5000E+02 
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Due to the difficulties of observing the actual mercury 
behaviour inside the steel vessel under the high proton 
pulses and radiation environment, more efforts in this pro-
ject are focused on finding a constitutive mercury material 
model to substitute current EOS model that can predict a 
better match with the experimental strain measurements on 
steel vessel’s external surface. By tuning material parame-
ters as shown in Table 1, the EOS-based constitutive model 
is utilized as the first trial to improve the model itself. The 
injected helium gas bubbles change the mercury-gas mix-
ture’s average density, altering the stress wave speed prop-
agated in the liquid-gas medium, therefore leading to un-
clear behaviour changes that deviate from the current EOS 
model. To reflect these changes in mercury material model, 
the parameters of density, stress wave speed and the tensile 
cut-off threshold are designed as tuneable variables in the 
standard EOS equations. Varying tensile cut-off, density 
and sound speed values are randomly selected from Latin 
hypercube sampling points [5]. Machine learning methods 
will train on strain data collected from these simulation 
runs, to find the optimized model parameters inversely that 
can produce best match with experimental strain data. 

Current Machine Learning Result 
By comparing with one set of experimental strain sensor 

data, 34 sets of FE sensor data extracted from the simula-
tions listed in Table 1 build trial ML surrogates. Projections 
of trial surrogate parameters (Fig. 7) on random 2d planes 
show multimodality, which indicates some optimized pa-
rameters that can reduce the strain discrepancy in FE sim-
ulation due to the existence of gas bubbles. 

 

 
Figure 7: Projections of surrogates on random 2d planes. 

 
The Iso-surface plot of these surrogate parameters 

(Fig. 8) also shows regions that likely contain candidate 
parameters for this inverse optimization problem. The 
identified regions in Fig. 8 will also help refine the param-
eters search space in next stage. 

 

 
Figure 8: Iso-surface plot of the ML surrogates for the three 
parameters. 

CONCLUSION 
Initial effort in this project introduces varying parame-

ters into traditional EOS-based mercury material model, 
seeking an improved constitutive model to include bub-
bles’ behaviour into mercury material. Work reported in 
this poster also builds the preliminary framework to inte-
grate parametric finite element simulation with machine 
learning for solving the inverse problem. Due to the limited 
number of finite element simulations, current results only 
show the candidate regions that likely have the optimized 
parameters set. Future work includes 1) introduce more 
physics-based bubble models into mercury material model 
for parameter tuning; 2) increase the number of FE simu-
lations to improve the accuracy of machine learning surro-
gates and enable more machine learning methods; and 
3) refine the parameter space and develop optimization 
framework for an efficient parameter search. 
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