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Abstract
Machine learning has proven to be a powerful tool with

many applications in the field of accelerator physics. Train-
ing machine learning models is a highly iterative process
that requires large numbers of samples. However, beam
time is often limited and many of the available simulation
frameworks are not optimized for fast computation. As a
result, training complex models can be infeasible. In this
contribution, we introduce Cheetah, a linear beam dynam-
ics framework optimized for fast computations. We show
that Cheetah outperforms existing simulation codes in terms
of speed and furthermore demonstrate the application of
Cheetah to a reinforcement-learning problem as well as the
successful transfer of the Cheetah-trained model to the real
world. We anticipate that Cheetah will allow for faster de-
velopment of more capable machine learning solutions in
the field, one day enabling the development of autonomous
accelerators.

INTRODUCTION
In recent years, machine learning (ML) has proven to

be a powerful solution to many problems in a variety of
fields, including accelerator physics. The subfield of rein-
forcement learning (RL), in particular, promises solutions to
many control and optimization problems encountered during
accelerator operations, with previous works demonstrating
the ability of RL to solve difficult high-stakes physics-based
control problems [1].

In RL, intelligent agents – implemented for example as
an artificial neural network (ANN) – are trained through
experience to iteratively solve a problem by observing an
environment ℰ – for example representing an accelerator
control problem – through observations 𝑜𝑡 and applying
actions 𝑎𝑡 to it in order to maximize a cumulative reward,
the sum of step-wise rewards 𝑟𝑡.

A major challenge in the field of RL remains the large
amount of experience required to successfully train agents.
While there is active research ongoing on improving the
sample-efficiency of RL [2], solving problems of sufficient
complexity continues to require in the order of 105 up to 109

samples. Due to physical limitations, such large amounts of
experience are usually infeasible to acquire in the real world,
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as taking just a single sample can sometimes take from a sec-
ond to a multiple minutes depending on the physical system
one is hoping to solve. Accelerator physics are particularity
constrained in terms of taking large numbers of real-word
samples as beam time is a notoriously scarce resource.

The issue of gathering large numbers of samples in the
real-world has given rise to a research direction in RL called
sim2real, where agents are trained in a simulation of the
real-world system and then transferred to the latter. With
ever more efficient simulation codes and ever faster and in-
creasingly parallel compute resources available, especially
thanks to the rise of general purpose GPUs (GPGPUs), this
approach has enabled the gathering of large amounts of
samples in feasible time frames. A similar approach can
be pursued when training RL agents for accelerator con-
trol, as a variety of capable simulation codes have been
implemented for particle accelerators over the years. These
include ASTRA [3], elegant [4], MAD-X [5] and Ocelot [6],
just to name a few. Existing accelerator simulation codes
have however been developed to be used during the design
phase of accelerators and for finding new working points –
applications where physical accuracy is often crucial and
compute times of multiple seconds, minutes and sometimes
even hours are acceptable. As a result, these simulation
codes usually require infeasible amounts of compute time
and resources when used to train RL agents. At the same
time, recent work in the field of sim2real [7] has found that
dynamics randomization – adding random disturbances to
the dynamics of a simulation – during the training of an
RL agent yields improved results over perfectly accurate
simulations.

In this paper, we propose a new accelerator simulation
code Cheetah1 that trades accuracy for speed to achieve
simulation compute times in the order of a few hundred
microseconds on off-the-shelf PC hardware. To this end, we
introduce Cheetah and its features, present benchmarks on its
speed and accuracy as well as demonstrate the application of
Cheetah to train an RL agent to solve an accelerator control
problem.

FAST PYTORCH-BASED PARTICLE
ACCELERATOR SIMULATION

The goal of Cheetah is to achieve fast iterations in simu-
lation, if necessary at the cost of accuracy. To this end, we
implement a linear beam transfer based on matrix multipli-
cation with first-order transport matrices in six-dimensional
phase space. Cheetah is implemented in Python and employs

1 Source code available at https://github.com/desy-ml/cheetah
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the PyTorch [8] framework. While the primary purpose of
PyTorch is the implementation of ML algorithms, its fast
tensor compute capabilities, strong GPU support and inter-
face similar to that of NumPy [9] make it an ideal fit for fast
parallel scientific computation.

Cheetah represents beams in either one of two ways. The
first, called a Particle Beam, represents every particle in a
beam as a seven-dimensional vector, tracking each particle’s
phase space position. This is similar to other accelerator sim-
ulation codes and allows for relatively precise beam tracking.
The second, called a Parameter Beam, assumes a Gaussian
beam and represents the entire beam by a seven-dimensional
vector 𝜇 of the mean position in each of the phase space’s
dimensions and a covariance matrix Σ. Note that the sev-
enth dimension is only maintained by Cheetah internally in
order to track beams off-axis, but that the external interface
of Cheetah assumes a standard 6-dimensional phase space.
Cheetah can generate beams itself, but also supports loading
Ocelot Particle Arrays, thereby adding support to load from
other formats such as ASTRA as well.

Either type of beam can be tracked through an accelerator
lattice, in Cheetah called a Segment. A Segment represents a
sequence of Elements that make up its lattice. Elements may
be magnets, drift sections, beam position monitors (BPMs),
other accelerator components as well as nested Segments.
Segments may be defined directly in Cheetah or loaded from
existing Ocelot lattice files. To track a beam through an
element with a transfer map 𝑅, Cheetah either computes
𝑃out = 𝑃in𝑅𝑇 for a Particle Beam with particle matrix 𝑃in,
or 𝜇out = 𝑅𝜇in and Σout = 𝑅Σin𝑅𝑇 for a Parameter Beam.

Cheetah currently supports drift sections, quadrupoles,
horizontal correctors, vertical correctors, BPMs and diag-
nostic screens. Cheetah simulates the readings of BPMs and
diagnostic screens for convenient use in RL environments.
For quadrupoles, diagnostic screens and BPMs, Cheetah can
simulate these elements being misaligned with respect to
the golden orbit. Support for further elements is planned.

As the key focus of Cheetah is speed, a number of steps
have been taken to optimize its performance: Firstly, GPU
acceleration enables Cheetah to make use of the parallel
compute capabilities of modern GPGPUs for tracking large
numbers of particles in parallel with the help of PyTorch’s
proven interface for GPU acceleration. This includes auto-
matic dispatching of computations to CPU or GPU based
on hardware availability. Secondly, Parameter Beams re-
duce the amount of required computations significantly by
considering only the particle beam’s parameters instead of
every single particle when accuracy is not needed. Thirdly,
dynamic transfer map combination helps reduce the num-
ber of matrix multiplications required for particle tracking.
Cheetah will dynamically determine the positions at which
the beam must be known, for example where there is a BPM
or a diagnostic screen, and combine all other transfer matri-
ces into exactly as many as are strictly needed.

In addition, Cheetah offers an interface that makes it well
suited for use in RL environments written in the OpenAI
Gym framework. A simple example of using Cheetah to

beam_in = Pa r t i c l eBeam . f r o m _ a s t r a ( ”beam . a s t r a ” )
segment = Segment ( [

D r i f t ( l e n g t h = 0 . 2 ) ,
Quadrupo le ( l e n g t h =0 . 2 , name=”ACCQ1” ) ,
D r i f t ( l e n g t h = 0 . 4 ) ,
Quadrupo le ( l e n g t h =0 . 2 , name=”ACCQ2” ) ,
D r i f t ( l e n g t h = 0 . 2 )

] )

segment .ACCQ1 . k1 = 10 .0
segment .ACCQ2 . k1 = −9.0

beam_out = segment ( beam_in )

Listing 1: Example Python code for tracking an ASTRA
beam through a FODO cell using Cheetah.

track an ASTRA beam through a FODO cell is given in
Listing 1.

BENCHMARKS
In this section, we compare the speed of Cheetah to that

of other simulation codes and briefly show that Cheetah’s
computations remain relatively accurate.

For the speed benchmark, we track a beam of 100 000
particles through a 2.05 m lattice of the Experimental Area
section of the ARES accelerator at DESY. The simulations
were run on a machine with an AMD Ryzen 5 2600 CPU, an
NVIDIA GeForce RTX 2070 and 16 GB of RAM. Simula-
tion times were averaged over multiple runs using Python’s
timeit package. To enable a comprehensive judgement of the
relative speeds, Cheetah was run in three different configura-
tions: Tracking a Parameter Beam, tracking a Particle Beam
on CPU and tracking a Particle Beam on GPU. Furthermore,
we compared Ocelot [6] once without space charge and a
step size the same as the entire section, and once with space
charge and a step size of 2 cm; elegant [4] with space charge
off; and ASTRA [3] both with space charge off and with
space charge on. The results of the speed benchmark are
listed in Table 1.

Thanks to the optimizations listed in the previous Section,
Cheetah can compute simple simulation setups between 2
and 6 orders of magnitude faster than existing simulation
codes. One must however keep in mind that this comes at
the cost of accuracy, where higher-order effects, collective
effects and others are left out in order to achieve the reported
speeds. This loss of accuracy is not desirable for applica-
tions in accelerator and working point development, where
existing simulation codes are used, but it may actually even
be advantageous when used in the training of RL agents [7].

The correctness of Cheetah’s computations was briefly
evaluated by comparing the tracking results of Cheetah vs.
Ocelot in the ARES Experimental Area (EA) for 125 dif-
ferent magnet settings. Ocelot had space charge simulation
activated in order to provide a more reliable reference on
Cheetah’s accuracy compared to the real world. We observe
that the results computed by Cheetah at 0.1 pC and 150 MeV
deviate only 0.5 % to 5 % from those computed by Ocelot.
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Table 1: Step Computation Times of Simulation Codes

Simulation Comment Time (ms)

ASTRA space charge 609 000.00
no space charge 234 000.00

elegant 300.00
Ocelot space charge 24 600.00

no space charge 247.00
Cheetah Particle Beam (CPU) 1.33

Particle Beam (GPU) 0.84
Parameter Beam 0.27

ACCELERATING REINFORCEMENT
LEARNING

We demonstrate an example where Cheetah enabled the
successful implementation of an RL agent to a particle ac-
celerator control task [10, 11]. Specifically, we look at
autonomously optimising the transverse beam properties
on a diagnostic screen in the Experimental Area (EA) at
ARES [12], an s-band linear electron accelerator at the DESY
SINBAD facility in Hamburg, Germany. The EA is followed
by an experimental vacuum chamber, which allows the instal-
lation of experimental setups that require specific transverse
beam properties – beam position and size. These proper-
ties are measured with a diagnostic station upstream of the
experimental chamber, where a camera is pointed toward
a scintillating screen that can be moved into the electron
beam. A sequence of three quadrupoles and two dipoles
enable the tuning of the beam properties in order to realize
desired beam parameters. Up to now, this task is mostly
solved manually by experienced operators, which requires a
lot of time and makes it difficult to reproduce results.

In order to apply RL to this problem, we define the task-
specific RL loop. For the given task, the RL agent can
observe target beam parameters 𝑏′ provided by the human
operator, the current beam parameters 𝑏𝑡 measured on the
screen as well as strength and deflection angle readbacks 𝑥𝑡
of the five considered magnets. Based on the observation
𝑜𝑡 = (𝑥𝑡, 𝑏′, 𝑏𝑡), the agent may then compute an action 𝑎𝑡 =
(Δ𝑘𝑄1

, Δ𝑘𝑄2
, Δ𝑘𝑄3

, Δ𝛼𝐶𝑣
, Δ𝛼𝐶ℎ

) – the desired changes to
the magnet settings – which is then sent to the accelerator’s
control system. On each step, the agent is rewarded by a
reward 𝑟𝑡 based on how much closer it got the measured
beam parameters to the target beam parameters.

Training an RL agent on the given task takes 6 000 000
steps, i.e. 6 000 000 iterations of setting the magnets, reading
the beam from the screen and doing a background subtrac-
tion. Due to limitations of the accelerator’s hardware, such
as relatively slow magnet power supplies and network delays
of the distributed control system, one such step takes ca.
10 s to 20 s. A full RL training on the real accelerator would
therefore require at least two years of continuous beam time
– an infeasible amount.

Even training the RL agent in simulation for the same
number of steps using existing simulation codes is impracti-

cal at best. An ASTRA simulation or an Ocelot simulation
including space charge would require about between 4 and
115 years of compute time. Even a training with the simplest
and therefore fastest configuration of an Ocelot simulation
would require over 17 days of compute time. While this
is in the realm of some other RL work [13] and can be
sped up in terms of wall-time using parallel computation on
high-performance compute clusters, it is still an expensive
proposition and would slow down the design process when
developing an RL solution such as the one presented here.
Using a Cheetah simulation for the training, the simulation
compute time can be reduced to just 27 minutes, at which
point the compute requirements of the actual RL algorithm
start dominating. A full training of the presented agent takes
around 3 hours on the machine listed in the Benchmark Sec-
tion when using the Stable Baselines3 RL library [14].

We observe that despite having been trained in a highly
simplified simulation, our trained RL agents perform very
well on the real accelerator, achieving better results faster
than alternative black-box optimization algorithms. Further-
more, the trained agents manage to optimize the beam faster
than even experienced human operators. If given enough
time, human operators can, however, still achieve a slightly
better beam than the RL agents.

SUMMARY AND OUTLOOK
In this work we introduced Cheetah, a high-speed parti-

cle accelerator simulation package for Python that trades
accuracy for speed in order to achieve the speed required
for training RL agents on accelerator control and optimiza-
tion tasks. Cheetah offers an interface well-suited to writing
RL environments and achieves simulations speeds 2 to 6 or-
ders of magnitude faster than existing accelerator simulation
codes. We further demonstrated the successful application
of Cheetah to the training of an RL agent on a beam opti-
mization task on the ARES accelerator. Despite, or possibly
even because of training in a slightly less accurate simula-
tion, the trained agent outperformed other algorithms and
kept up with human performance on the real accelerator.

As part of our ongoing research into RL for accelerator
control and optimization toward autonomous accelerators,
we intend to continue to maintain and extend Cheetah for
training agents on future RL applications.
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