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Abstract

The study of ionization cooling considered for muon
colliders requires a full 6D treatment because of the
need to exchange the longitudinal and transverse emit-
tances. A general cooling channel consists of solenoids and
quadrupoles for focusing, dipoles to generate dispersion,
wedge absorbers for cooling and emittance exchange, and
rf cavities for reacceleration. The quadrupole strengths can
be adjusted so that the net focusing is cylindrically symmet-
ric. The beam moments in such a system are completely
specified in terms of five generalized emittances. We de-
rive a set of coupled first-order differential equations de-
scribing the evolution of the generalized emittances due to
the damping and excitation processes. The framework for
lattice design is considered.

1 INTRODUCTION

In order to reduce both the transverse and longitudinal
emittances of a muon beam for envisioned neutrino fac-
tories and muon colliders, 6D ionization cooling channels
are being developed [1–4]. Promising designs consist of
strong solenoids to provide transverse focusing, (gradient)
dipoles to provide dispersion for emittance exchange, a
low-frequency rf field to provide longitudinal acceleration
and focusing, liquid hydrogen absorbers at minimum beta
locations to provide ionization energy loss for transverse
cooling, and wedged absorbers at maximum dispersion lo-
cations to provide momentum-dependent energy loss for
longitudinal cooling. The linear Hamiltonian of such a fo-
cusing channel can be written as
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where the spatial coordinates (x, y, z) and their corre-
sponding canonical momenta (px, py, δ) are defined rela-
tive to a reference particle whose trajectory is a plane curve
with radius of curvature ρ(s) and follows the channel’s lay-
out. Lz = xpy − ypx is the canonical angular momentum.
The path length s along the reference orbit is used as the
time variable, and δ = (p−p0)/p0 is the relative longitudi-
nal momentum deviation from the nominal momentum p0.
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γ0 is the Lorentz factor of the reference particle. The nor-
malized on-axis solenoid field strength κ and quadrupole
gradient g are given by κ(s) = q

2p0
Bs(0, 0, s) and g(s) =

q
p0

∂By

∂x , where q is the muon’s charge. V (s) represents the
longitudinal focusing from rf. For a gradient dipole with
symmetric focusing, 1/ρ(s)2 + g(s) = −g(s), and the to-
tal focusing strength becomes K(s) = κ(s)2 + 1/2ρ(s)2.
Then the Hamiltonian
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This Hamiltonian applies to linac-like single-pass channels
as well as ring-like multi-pass channels that are under con-
sideration. In any case, the underlying physics is 6D ion-
ization cooling in a (quasi-) periodic channel.

To understand the basic beam dynamics of 6D ioniza-
tion cooling and to establish a theoretical framework for
the design of cooling channels, beam-moment equations
have been developed in several papers for ionization cool-
ing over the past several years [5–10]. Cooling dynam-
ics described in the next section are based on Ref. [10].
There are 21 different second moments for a 6D phase
space. In general, they are formidable to treat analytically.
However, since we are mainly interested in cooling of a
matched beam (i.e., it has equilibrium Gaussian distribu-
tion of the focusing channel) and the damping and exci-
tations are small perturbations to the Hamiltonian motion,
the moment equations can be reduced to evolution of beam-
envelope functions characterizing the shape of the phase-
space distribution and evolution of beam emittances char-
acterizing the distribution density. The envelope functions
are dominated by the strong Hamiltonian forces, and emit-
tance evolution is determined by the small dissipative and
diffusive forces. Beam evolution near equilibrium has been
well treated in the context of radiation damping in electron
storage rings [11]. The general formalism can be applied
to the ionization cooling as well. In this short report, we
briefly outline the theory of emittance evolution in section
2 and envelope-function design in section 3.

2 EMITTANCE EVOLUTION

In a cooling channel, the equation of motion using path-
length s as the time variable is of the form

dX

ds
= JHX +

dX

ds

∣
∣
∣
∣
M

. (3)

Here, the first term on the right-hand side is the Hamil-
tonian part of the motion, where J is the simplectic ma-
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trix whose elements are the Poisson brackets of the phase-
space variables, and H is the symmetric matrix associated
with the above Hamiltonian H via H = XT HX/2. The
last term in Eq. (3) represents the interaction with materi-
als giving rise to weak dissipation and diffusion. It is of the
form

dX

ds
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=
dX

ds
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+ Ξ = AX + Ξ. (4)

Here (dX/ds)|M,D is the dissipative part of the interaction
with material, A is the dissipation matrix, and Ξ represents
the stochastic excitations discussed later in the moment
equations. The dissipative part of the equation of motion
is given by
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Here η = 1
pv

dE
ds is a positive quantity characterizing the

average force due to ionization energy loss for a muon of
momentum p and velocity v. The terms (px + κy) and
(py − κx) are, respectively, the x and y components of the
kinetic momentum. The wedged absorbers are treated as
having uniform thickness with density depending linearly
on the transverse coordinates. To linear order, the wedge
absorber is characterized by ∂xη and ∂yη, and the energy
dependence of ionization energy loss is given by ∂δη.

From the equation of motion, the moment equation reads
dΣ
ds

= (JH + AD)Σ + Σ (JH + AD)T + B. (9)

Here the quadratic beam-moment matrix Σ = 〈XXT 〉, the
diagonal matrix B = diag(0, χ, 0, χ, 0, χδ) arising from
the stochastic excitations represented by Ξ in Eq. (4). There
are two different sources of excitations: multiple scattering
characterized by the projected mean-square angular devi-

ation per unit length χ =
(

13.6 MeV
pv

)2
1

Lrad
, where Lrad is

the radiation length of the absorbers, and energy straggling
characterized by the mean-square relative energy deviation
per unit length χδ.

To solve the cooling dynamics contained in Eqs. (3, 9),
we first solve the Hamiltonian part that preserves the emit-
tances and then compute the emittance evolution due to
dissipation and diffusion. The Hamiltonian, Eq. (2), can
be decoupled to a simple form by two canonical transfor-
mations: a rotation to the Larmor frame (rotating with the
angle φ(s) =

∫ s

0
κ(s̄)ds̄) that decouples the two transverse

degrees of freedom, and the dispersion transformation

x̃ = x̃β + D̃xδ , p̃x = p̃xβ
+ D̃′

xδ, (x ↔ y) (10)

z = ẑ − D̃′
xx̃ + D̃xp̃x − D̃′

y ỹ + D̃yp̃y , δ = δ̂ (11)

that decouples the transverse and longitudinal motions,
provided that the dispersions Dx and Dy are zero in rf cav-
ities and satisfy the equations

D̃′′
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ρ
, D̃′′
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sin φ

ρ
. (12)

Here the symbol˜ indicates quantities in the Larmor frame
and a prime indicates differentiation with respect to s. In
terms of the betatron motion xβ and yβ and synchrotron
motion ẑ, the new Hamiltonian simplifies to
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(13)

where I(s) = 1
γ2
0
− D̃x cos[φ(s)]

ρ(s) − D̃y sin[φ(s)]
ρ(s) .

The Hamiltonian H̃β has five linearly-independent
quadratic invariants

Ix = γT x2
β + 2αT xβpxβ

+ βT p2
xβ

, (14)

Iy = γT y2
β + 2αT yβpyβ

+ βT p2
yβ

, (15)

Iz = γL ẑ2 + 2αL ẑδ + βL δ2, (16)

Ixy = γT xβyβ + 2αT

xβpyβ
+ yβpxβ

2
+ βT pxβ

pyβ
, (17)

Lz = xβpyβ
− yβpxβ

. (18)

Here the envelope functions, γT , etc., are the periodic so-
lution of the following familiar equations

β′
T = −2αT , α′

T = KβT − γT , γT =
1 + α2

T

βT
(19)

and

β′
L = −2IαT , α′

L = V βT − IγT , γL =
1 + α2

L

βL
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Averaged over the phase space, these five single-particle
invariants lead to five beam invariants that are usually
called beam emittances:

εi =
1
2
〈Ii〉, i ∈ {x, y, z, xy, L}. (21)

Using emittances and invariants, the normalized equilib-
rium distribution can be written as

ρ(X) =
1

(2π)3ε6D
e
− εyIx+εxIy−2εxyIxy−2εLLz

2(εxεy−ε2xy−ε2
L

)
− Iz

2εz , (22)

where the 6D emittance is

ε6D = (εxεy − ε2xy − ε2L) εz. (23)

In a focusing channel without absorbers, the invariant emit-
tances and the lattice functions βT,L, αT,L, etc. determine
the matched beam through the equilibrium phase-space dis-
tribution, Eq. (22).

We now address the effect due to interaction with ma-
terial. Since the interaction is a weak perturbation to the
Hamiltonian system, the beam phase-space evolution still
follows the above equilibrium distribution but the emit-
tances will slowly approach certain equilibrium values de-
termined by the balance between ionization cooling and
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stochastic heating. The s-derivatives of the emittances can
be computed by inserting the material part of the equation
of motion into the derivative of Eq. (21). The stochastic
contributions can be derived from Eq. (9). The results are

ε′s = −(η − ec−)εs + ec+εa + es+εxy + b εL + χs, (24)

ε′a = −(η − ec−)εa + ec+εs + χa, (25)

ε′xy = −(η − ec−)εxy + es+εs + χxy, (26)

ε′L = −(η − ec−)εL + b εs + χL, (27)

ε′z = −(∂δη + 2ec−)εz + χz, (28)

where εs and εa are the symmetric and asymmetric emit-
tances (εx ± εy)/2, e = | D| · | ∂η|/2 is half of the
maximum exchange rate through dispersions and wedges,
c± = cos(θD ± θW ) and s± = sin(θD ± θW ) with θD

and θW being the orientations of the dispersion vector and
the wedges, and b = ηκβT + αT es− + βT e′s′− with

e′ = | D′| · | ∂η|/2 and s′− = sin(θD′ − θW ). The exci-
tation terms are

χs =
1
2
βT χ +

1
2
Hs χδ, (29)

χa =
1
2
Ha χδ, (30)

χz =
1
2
βLχδ +

1
2
γL(D2

x + D2
y)χ, (31)

χxy =
1
2
Hxy χδ, (32)

χL =
1
2
HLχδ. (33)

Here the H functions are defined similarly as Eqs. (14-
18) but phase-space variables are replaced with disper-
sion functions. For example, as in radiation damping the-
ory, Hx = γT D2

x + 2αT DxD′
x + βT D′2

x . These heat-
ing terms arise from stochastic contributions to the beam
invariants.

Note that the emittance exchange is accomplished by
trading the damping rate ec− between the transverse and
longitudinal degrees of freedom. Without excitations,

d ε6D
ds

= − (2η + ∂δη) ε6D. (34)

Therefore the total 6D damping rate is independent of the
emittance exchange. This is equivalent to the Robinson the-
orem for radiation damping [12].

3 LATTICE-FUNCTION DESIGN

The emittance evolution, Eq. (24-28), shows that simul-
taneously cooling (negative damping coefficients) in both
transverse and longitudinal phase space can be achieved
through emittance exchange. Cooling behavior and equi-
librium emittances can be computed when the lattice func-
tions and absorbers are specified. However, designing a lat-
tice with the desired lattice functions is a challenging task.
Rather than blindly relying on simulations, Eqs. (19, 20,
12) can facilitate the lattice-function design. Even though
nonlinear effects complicate the design process, the linear

theory should still provide a good guidance in the early de-
sign stage since few machines work in a situation where
their linear behavior performs badly.

In addition to numerical methods, analytical formulas
for beta function and orbit stability are derived in Refs. [13,
14]. The focusing properties are determined by the Hills
equation x̃′′

β+K(s)x̃β = 0. For a periodic solenoidal chan-
nel, the field varies continuously with period L. It is nat-
ural to use the Fourier coefficients {ϑn} of the normalized

focusing strength function ϑ(ς) =
(

L
π

)2
K(L

π ς) to charac-
terize the solenoid field. Here ς = π s

L is the normalized
position. The beta function can be calculated with

β(s) =
L

π

sin(
√

ϑ0π)√
ϑ0 sin µ

[

1 +
∞∑

n=1

�[ϑnei2nπs/L]
n2 − ϑ0

+ · · ·
]

.

(35)
Here µ is the one-period phase advance that can be calcu-
lated via cos µ = ∆/2, and ∆ is the trace of the one-period
transfer matrix that can be calculated with

∆ = 2 cos(
√

ϑ0π) +
π sin

√
ϑ0π

2
√

ϑ0

∞∑

n=1

|ϑn|2
ϑ0 − n2

+ · · · .
(36)

The orbit stability can be determined by the well-known
criteria |∆| < 2. Higher-order expressions of β and ∆
are available in Ref. [13]. Using these formulas, one can
quickly estimate the basic properties of a solenoidal chan-
nel from the Fourier coefficients of its focusing function.
More important than computing the values, insight can be
gained from these analytical expressions.

Beyond the linear lattice design, ionization cooling chan-
nels need to confront severe nonlinearity due to the strong
focusing required and compactness of the channel. On this
front, not much has been done except simulations.
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