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Abstract 
Based on the Ensemble Model, V-Code has been devel-

oped for fast beam dynamics simulations. The Single-
Ensemble Model (SEM) considers a beam as an Ensem-
ble, incorporating internal particles motion in phase 
space. A SEM code, including space charge model, has 
been successfully tested and applied to the TTF (TESLA 
Test Facility, DESY). It demonstrates good agreement in 
beam trajectory and beam sizes. However, for the emit-
tance simulations the Multi-Ensemble Model (MEM) is 
needed. Whereas the external fields can be implemented 
by generalization of the SEM, the space charge force im-
plementation needs more efforts. A new approach for 
space charge treatment, available for the MEM has been 
developed. The method is based on the Multi-Centered 
Gaussian Expansion (MCGE) of the Ensemble distribu-
tion function and yields significant advantage in simula-
tion time in comparison with direct methods. 

1 INTRODUCTION 
The Ensemble Model [1] is derived from Vlasov equa-

tion and includes besides a centroid motion also internal 
particles motion. The beam is represented by a set of sub-
beams or Ensembles. The Single Ensemble Model (SEM) 
treats a beam as one Ensemble and the space charge 
forces are calculated with a help of analytical approxima-
tion [2]. Forces acting on particles are taken in linear ap-
proximation, what corresponds to invariance of the En-
semble emittance. For simulations of nonlinear effects the 
beam has to contain several Ensembles, i.e. Multi-
Ensemble Model (MEM) has to be developed. Whereas 
nonlinear external fields can be implied automatically, the 
space charge force needs additional consideration. Several 
approaches for the space charge field calculations in 
MEM (direct integration, Poisson solver, distribution 
function expansion) are discussed. The algorithm based 
on the Multi-Centered Gaussian Expansion (MCGE) 
demonstrates better properties being applied to the MEM. 

2 THE ENSEMBLE MODEL 
Time development of Ensemble parameters is described 

by 6 differential equations for the averaged center in 
phase space 
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and by 21 equations for the second order moments of the 

Ensemble distribution function  
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Here , , , , , ,x y zx y z p p pξ ν =  and ( , , )t r pψ ψ=  is an 
Ensemble distribution function. Auxiliary matrices 
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Lorentz force acting on the Ensemble center. Matrices 
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2.1 Space Charge Model for Single Ensemble 
A space charge algorithm for the SEM assumes an En-

semble to be a homogeneously charged ellipsoid. Space 
charge field gradient at the ellipsoid center can be calcu-
lated by integration over the thin charged shell. Action of 
charges in this shell is not compensated and they forms 
the Lorentz force in the Ensemble center vicinity [2]: 
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where  is Ensemble charge, V  is geometrical volume 
of the Ensemble: 
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In general case the z  axis does not coincide with direc-

tion of vector 1p p pβ = + ⋅
r r r r

, so the coor-

dinates transformation can be performed as 

To take into account relativistic effect factor G  has been 
introduced: 

�
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G u u uδ δ γ− ⋅ + ⋅ − .  (7) 

( )�r r r= ⋅ −Tr r r% ,                         (11) The Single Ensemble space charge model, being a 
semi-analytical one, does not require long computational 
times, the V-Code [3], based on it, is very fast and has 
demonstrated high applicability to a several beam dynam-
ics applications. In particular, it was shown [3], that sizes 
and momentum spreads of the beam in photoinjectors, 
simulated with conventional PIC-code and with SEM 
version of V-Code are in very good agreement. However, 
for many important problems, i.e. for the beam emittance 
simulations, �one-ensemble-beam� is not enough. Exten-
sion of the Single Ensemble space charge model to a 
�multi-ensemble beam� is impossible because of the 
model assumptions: the small offset from the driving En-
semble center has no place in general case, field disconti-
nuity at the boundary of homogeneously charged ellipsoid 
demands additional complications. 
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the matrix M : G
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The equation (10) with boundary conditions (exact or 
asymptotic), can be solved using grid based methods, 
which give solution at all points of discretization, what 
significantly exceeds needs of the Ensemble Model. 
Moreover most of these methods are valid for any arbi-
trary right part of the Poisson equation, so the regularity 
of the Gaussian distribution is not used. 

2.2 Space Charge Model for Multi-Ensemble 
Beam 

Driving Ensemble field with derivatives has to be con-
tinuous and needs to be calculated only at centers of other 
Ensembles. A smooth Ensemble charge distribution func-
tion provides the field continuity. The Gaussian distribu-
tion is the most probable candidate for it: 

3. Multi-Centered Gaussian Expansion (MCGE) is 
based on the expansion of the Ensemble charge density in 
distributed basis functions with known solutions of the 
field equation. For symmetrical basis functions 
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 is a radius-vector 

from the basis function nmlψ  center to the observation 

point,  is a weight part of the Ensemble charge. nmlq

To find a fields generated by Ensemble with charge dis-
tribution (8) several methods are available. 

1. Direct Integration implies straightforward calcula-
tions from the retarded potential approach [4].This ap-
proach includes many physical effects (such as a synchro-
tron radiation), but multidimensional integration makes it 
very slow and the singularity complicates its implementa-
tion. 

Distribution function (9) is approximated by a series  
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2. Using Poisson Solver with Lorentz transformations 

assumes no momentum spreads are taken into account. 
After coordinates transformation (which corresponds to 
the matrix  diagonalization) and integration (8) in 
pulse space, we have for charge distribution function: 
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not orthogonal, but factorization of the weights 
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dimensional Gaussian distribution. In the Ensemble rest 
system the Poisson equation has to be solved: 

Standard procedure yields a system of linear equations 
for weights jwξ , the matrix elements can be calculated 
analytically. 4 ( , , , , ,x yQ x y zϕ π ψ σ σ σ∆ = − ⋅% % % % % %% .      (10) 

The main approximation parameters are: 1)α  is nor-
malized distance between two basis functions 

:
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( 0j jξ α σ= ); 2) 0K Nξ ξ ξασ=

N
σ  is asymptotic pa-

rameter, determined by ξ  - a number of terms in sum 

(16) for truncation; 3) 0σ  is rms basis function size. By 

choosing 0 min ξ νσ σ σ= =  we obtain 0Nν =  and 

. Centers of the basis functions are located at the 

plane 
0 1wν =

0νξ = . If all three dimensions of the Ensemble are 
significantly different triangular truncation [5] in 2D sums 
can be used to reduce computation time. Using MCGE a 
space charge field at the point of interest ( , , )x y z  can be 
calculated by 

( ,
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ming up of (15): 
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moreover a sum with index equal  is degenerated, so it 
can be simply omitted. Other advantage of the MCGE is 
the capability of analytical expressions (in terms of corre-
sponding sums) for derivatives of the space charge field, 
what is necessary for matrices (4) computation. 

Figure 1. Electric field of round Gaussian Ensemble, cal-
culated using MCGE in comparison with conventional 

Poisson solver. 
Electric field of a round ( x yσ σ ) Gaussian 

distribution calculated with conventional Poisson solver 
(solid lines) and using MCGE (markers) is shown in Fig.1 

for different zζ σ σ⊥=  values. The results are in very 

good agreement, 100 100×  mesh has been used for 
Poisson solver, whereas the MCGE for the fields calcula-
tion treats ( ) 1zN 30ζ = ÷  terms in sum (18) (for the 
round beam two sums in (18) are degenerated). Field gra-
dients ( )z;rE r E z∂ ∂ ∂ ∂  at the driving Ensemble cen-
ter are calculated using Single Ensemble space charge 
model (5) and MCGE and shown in Fig.2.  

 
Figure 2. Electric field gradient of round Gaussian En-

semble, calculated using MCGE in comparison with SEM 
analytical approximation (5). 

3 CONCLUSIONS 
A new approach to space charge calculation in Ensem-

ble Model has been developed. Based on the Multi Cen-
tered Gaussian Expansion of Ensemble distribution func-
tion it has advantages in comparison with direct methods 
and conventional Poisson solvers as well.  The field gra-
dient at the Ensemble center calculated using MCGE is in 
good agreement with analytical approximation of Single 
Ensemble Model.. The results of space charge field simu-
lations by MCGE agree with obtained by conventional 
Poisson solver, whereas the calculation with MCGE takes 
less time. 
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