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Abstract

In the context of heavy-ion synchrotrons, coupling
impedances in ferrite-loaded structures (e.g. fast kicker
modules) are known to have a significant influence on
beam stability. While bench measurements are feasible
today, it is desirable to have the coupling impedances in
hands already during the design process of the respec-
tive components. To achieve this goal, as a first step,
we have carried out numerical analyses of simple ferrite-
containing test systems within the framework of the Fi-
nite Integration Technique. This amounts to solving the
full set of Maxwell’s equations in frequency domain, the
particle beam being represented by an appropriate exci-
tation current. With the resulting electromagnetic fields,
one may then readily compute the corresponding coupling
impedances. Despite the complicated material properties
of ferrites, our results show that their numerical treatment
is possible, thus opening up a way to determine a crucial
parameter of kicker devices before construction.

INTRODUCTION

Within the design work of the planned heavy-ion syn-
chrotron at the GSI accelerator facility, detailed impedance
studies are required. Due to the target vacuum quality of
10−12 mbar and particle currents of up to1 A, beam insta-
bilities would have tremendous effects on the operability
of the synchrotron. One unknown is the beam response to
the ferrite-loaded kickers. Vice versa, heating of the kicker
components may be a problem.

Caspers has addressed the measurement of coupling
impedances via the so-called coaxial-wire technique [1],
which is most accurate for ultra-relativistic particle beams.
The obvious drawback of this approach is that a prototype
component has to be at hand. During the design process of
new components, therefore, simulations may be helpful.

In this paper we consider the numerical determination of
the longitudinal coupling impedance [2]

Z||(ω) =
1
q2

∫
dxdyρ(x, y)

∫
dzEz(x, y, z;ω)eiωz/βc

(1)
whereρ(x, y) is the transverse charge distribution of the
particle beam andq =

∫
dxdyρ(x, y). The electric field in

the above expression is generated by the current density

J ext(x, y, z; t) = βcẑρ(x, y)δ(z − βct), (2)

which corresponds to an infinitesimally short bunch of par-
ticles travelling with velocityβc along the positivez direc-
tion. The equivalent expression in frequency domain is

J ext(x, y, z;ω) = ẑρ(x, y)e−iωz/βc. (3)

In the case of kicker impedances, we will restrict ourselves
to frequencies below100 MHz, which are of primary inter-
est for the planned heavy-ion synchrotron.

COMPUTATIONAL APPROACH

In order to determineZ|| for a given geometry and ex-
citation current we need to calculate the electric field. Our
starting point is

∂ × ν∂ ×E − ω2εE = −iωJ ext,

a descendant of Maxwell’s equations in frequency domain.
Hereν ≡ 1/µ, with possibly complex permeabilityµ and
ε denoting permittivity.

Within the Finite Integration Technique[3], we carry out
an appropriate discretization, which leads to a matrix coun-
terpart of the former equation,

(
C̃MνC − ω2Mε

)
e = −iωjext. (4)

In the presence of ferrites, this system of linear equations
may become highly ill-conditioned due to the large jumps
in permeability. We therefore do not attempt to solve the
matrix equation as a whole but proceed as follows: Firstly,
an electrostatic problem is solved yielding a divergence-
free source termj′ext and the ’static’ part of the electric field
solution. We then note that, at low enough frequencies, the
termω2Mε ≡ b is small compared with̃CMνC ≡ B (in
the sense of some matrix norm). One may then expand the
solution in terms ofbB−1 (symbolically). It has turned out
in our simulations that keeping up to six terms of this series
expansion is sufficient (below100 MHz). The inversion of
the matrixB in each expansion term formally corresponds
to solving a standard magnetostatic problem, which will
therefore not be discussed here.

We finally remark that simulations are carried out using
the software tools CST MICROWAVE STUDIOR©[4] and
MATLAB [5].

BOUNDARY CONDITIONS

One problem in modelling an elementary particle beam
traversing an accelerator component is the question of ap-
propriately chosen boundary conditions. This is crucial
since the fourier transform of a short bunch, Eq. 3, extends
from z = −∞ to +∞. Since our computational domain is
finite we have to take one of the following options:

• open boundary conditions, e.g. by using perfectly-
matched layers[6]

• periodic boundary conditions

MOP63 Proceedings of LINAC 2004, Lübeck, Germany

162 Theory, Codes, Simulations
Theory, Codes, Simulations, Other



• no special prerequisite despite long enough pieces of
beam pipe leading to the accelerator component

For reasons of simplicity we have chosen the last op-
tion. This is possible since the frequency range of inter-
est (< 100 MHz) is well below the cutoff frequency of the
beam pipe (radius10 cm). We will now shed some light on
whether this approach is practical in numerical simulations.

To this end let us consider thez dependent imaginary
part of the integrand of Eq. 1 on the beam axis, i.e.

Im
(
Ez(0, 0, z;ω)eiωz/βc

)
, (5)

which will help us to display the boundary effects. Con-
sider the test system consisting of two pieces of a perfectly
conducting beam pipe (20 cm× 20 cm quadratic cross sec-
tion, variable length) connected to a cubic cavity (60 cm
edge length, again perfectly conducting), as sketched in
Fig. 1, top. Figure 1, bottom, shows a comparison of
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Figure 1: Top: sketch of the test system (length300 cm).
Bottom: integrand, as given by Eq. 5, for short beam pipes
(length 120 cm each, dashed line) and long beam pipes
(length270 cm each, solid line), atω/2π = 1 MHz and
β = 0.85.

the integrand, Eq. 5, atω/2π = 1 MHz, between two ver-
sions of the test system, one having overall length300 cm,
the other600 cm. For |z| > 50 cm, the solid curve is a
constant reflecting the space-charge impedance per length
within the beam pipe (see next section). In the case of short
beam pipes (dashed curve), boundary effects lead to a de-
viation from this expected behavior. For|z| < 50 cm, both
curves are nearly identical. Thus, the impedance contribu-
tion of the cavity is correctly reflected by both simulations.

We have observed that boundary effects generally be-
come larger towards lower frequencies (not shown here),
which implies the need for longer beam pipe pieces in the
simulation. At high frequencies, in contrast, boundary ef-
fects pose a less serious problem.

In summary, simulations with no other prerequisite than
long enough adjacent beam pipes are sufficient for the cal-
culation of coupling impedances. However, a further quan-
tification of the reported effects would be useful. Moreover,
one may imagine that more sophisticated kinds of bound-
ary conditions (see above) would lead to more economic
simulations. This will be one of the subjects of our further
research.

SPACE-CHARGE EFFECTS

For β → 1 the electric field of a point charge assumes a
nearly ’plate-like’ shape, meaning that its Coulomb interac-
tion with preceding or following particles is negligible. For
β < 1, however, these interactions (called space-charge ef-
fects) have a negative contribution to the imaginary part of
the longitudinal coupling impedance.

As a test of our simulations, we have quantified this con-
tribution for the case of an infinitely long beam pipe of ei-
ther cylindrical or quadratic cross section. The walls are
assumed to be perfectly conducting.

Due to the simple geometries of these examples, analyt-
ical expressions for the coupling impedances are available
which we compare to the ones obtained from simulation.
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Figure 2: Negative imaginary part of the coupling
impedance per unit length and frequency of a cylindrical
beam pipe (radius20cm, length3m). Simulation A uses a
current based on a single grid line along thez axis, whereas
simulation B mimics a cylindrical current using grid lines
within distance five from the origin of the transverse plane.

The expression for the longitudinal impedance for this
case can be found in [7] and is not repeated here. We only
remark that the impedance sensitively depends on the ra-
dius,a, of the particle beam. In Fig. 2, we see the compar-
ison between theory and simulation in the case where the
beam current has been imprinted on the central grid line
along thez axis. Expressed differently, in each transverse
plane, one ’dual’ grid cell has been used to model the cur-
rent. One may ask what radius should be assigned to this
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current. Firstly, Fig. 2 clearly shows that a radius of half the
grid spacing is in contradiction to theory. Secondly, match-
ing analytical results to simulation (dashed line), we find
a ≈ 0.2 times the grid spacing (only equidistant grids are
used in this section). This finding agrees with the results of
Waldschmidt and Taflove [8] who investigated the effective
extension of current filaments. Thirdly, when modelling the
beam current using several cells per transverse plane (i.e. a
bundle of grid lines along thez axis) simulation data and
theory coincide, as expected. This is also shown in Fig. 2
for the case of a bundle of grid lines with transverse diam-
eter of10 cells.

Rectangular beam pipe

The impedance for this case can be calculated exactly
via textbook methods. A comparison with simulations then
leads to a plot similar to Fig. 2, which we omit here due
to the limited space. Again, assuming an effective radius
of ca. 0.2 cell sizes for a single-line current leads to the
agreement of theory and simulation.

FERRITE-LOADED COMPONENTS

We finally come to the main objective of our work, i.e.
impedance calculations for kicker modules. Figure 3 shows
the model under investigation here. It is similar to the SIS
injection/extraction kicker operated at GSI, with respect to
the key features, i.e. the design of ferrite modules (held by
20 mm-thick steel plates) and the dimensions of vacuum
cavity and adjacent beam pipes. Simplifications have been
introduced by assuming perfectly-conducting walls and by
omitting finer geometric details. The material specifica-
tions (permittivity, complex frequency dependent perme-
ability) for the used ferrite 8C11 have been obtained from
the supplier’s data sheet (www.ferroxcube.com).

The motivation behind treating an existing accelerator
component is to be able to compare our numerical results
with measurements.

Figure 3: Model similar to GSI’s existing SIS kicker, total
length is290 cm, cavity radius20 cm, beam-pipe radius
10 cm. We put five ferrite modules here.

Figure 4 shows the coupling impedance below100 MHz
stemming from numerical simulation as described above.
Thez integration (see Eq. 1) extends over the whole cavity,
the beam pipe parts being omitted.

Since the ferrite permeability possesses a considerable
temperature dependence, we have to fix the simulation tem-
perature (here to room temperature).
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Figure 4: Longitudinal coupling impedance of the model
shown in Fig. 3.

OUTLOOK

Further steps in our work will cover two main subjects:
Firstly, we will further improve our numerical approach
(use of different boundary conditions, multi-grid solvers).
Secondly, comparison with measurements is needed. To
this end, it would be desirable to measure the coupling
impedance of the existing SIS kicker either within accelera-
tor operation or on-bench, e.g. by the coaxial wire method.
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