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As part of the Yale Design Study of Linear Accelerators the stepped 

phase velocity linac has been considered. The motivation for not changing 

~ continuously but piecewise in an iris-loaded waveguide was originally an 

assumed high cost for the fabrication of many different kinds of sections 

in a very long proton accelerator. The work at Stanford, as described by 

R.B. Neal in the preceding report, suggests that a tapered ~ accelerator 

may not be very much more expensive than a stepped ~ machine. Further, if 

the design for a proton accelerator in the energy region above 200 Mev should 

be done for a frequency as low as 400 Mc/s, the waveguide cost will be mainly 

that for fabrication of the various sections without regard as to whether 

the phase velocity is tapered or stepped. In any case, some electron acceler-

ators are operated at a constant phase velocity in the "bunching section" and 

resemble a stepped phase velocity accelerator in this area. For this reason, 

and because of the current speculation about the feasibility of constructing 

a meson accelerator, the following analysis has been done. First, the most 

general case will be considered and the approximations used will be indicated. 

Certain small terms can conveniently be dropped if the accelerated particles 

are protons, but should be retained if lighter particles are to be accelerated. 

The Hamiltonian 

We assume (1) constant gradient, and 

(2) forward wave only. 

These conditions are precisely realized in the Stanford M machine design, 
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although the Yale design has been oriented to the n-mode iris-loaded standing-

wave accelerator. The backward wave will induce small oscillatory pertur-

bations on the phase and energy, which are not considered here, although it 

does not appear that the fundamental conclusions are invalidated by the back-

ward wave. Analysis suggests that the effects of the backward wave are 

nullified because injection and ejection must each occur at an iris. 

Consider now the equations for the axial motion 

.Qy eE cos f/J 
dz mc 2 

df/J 2n ( 1 1 ) , with the usual notation, 
dz :\ S S 

and 13 = the constant phase velocity in the section in question and f/J is the phase 

of the particle forward of the peak of the rf wave. This is the negative 

.~ 

of the ~ used by L. Smith', because, as will be shown, the f/J notation is 

useful in forming an optical analogy. Solving these equations (by the 

elimination of dz) and integrating, one obtains 

y y - y$ y13 q2 sin f/J = H (y,f/J) 

where 

The q2 value is an important parameter of the calculation. For proton 

accelerators and realizable values of E, q2 ~ 10-4 and thus terms in q2 

(and in some cases of q) are neglected, while, for an electron accelerator, 

q is of the order of unity and many of the approximations given below are 

• "'J'ric 
~nva1id • The q and q2 terms should be included for lighter particles. 

. '~ 
'L. Smith, Internal Reports, LRL, LS-1 and LS-3. 

"!rl~ 2 -3 
For mesons, q is about 10 and the q value in this case is about midway 
between those for the proton and the electron. 
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H is the Hamiltonian for anyone section. Defining a length parameter 

2rrz 

AYS 
and differentiating,yields 

oH _ .£y 
00 de 
oH + ~ 
oy de 

such that y has the character of a canonical momentum and 0 that of its 

conjugate coordinate. Both Slater and Chu have formulated expressions 

quite similar to those above, although electrons were under consideration 

and yS was used rather than y. 

There are really three differential equations, but the third one (in dz) 

will be integrated when a canonical transform is done. 

It is useful to define now 

H 1 .2;,; = - s~n 'P , 

by taking 0 = 0 when y y (S = S). 0 is the minimum phase angle a particle 

can have, as seen in Fig. 1, in which y and 0 are plotted for various values 

of "0, which represents H (0). The quantity i characterizes an "orbit", that 

is, a single particle path. Clearly there is no stable phase angle in any 

constant phase velocity linac section, except for ~ =rr/2, and this is one 

in which no energy is gained. 

The areas Al and A
2

, shown in Fig. 1, are equal and show the nature of 

the distortion as a phase group moves through the accelerator. 

Length and the Canonical Transformation 

Obtaining z, or its representation e, involves a straightforward but 

tedious calculation. It is best explained in the following way: a dis-

tribution in y and 0 will become distorted as it moves through y, 0 space, 

yet, by Liouville's theorem, the density in canonical phase space must remain 
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constant. It is desirable to transform the y and 0 into some other set 

of coordinates, say P and Q, in which the phase distribution remains undis-

torted. The Hamiltonian expresses libration in (y,0) space, so one can 

transform to (P,Q) space by means of the Hamilton-Jacobi principal function, 

specifically the one that is expressed in the old coordinate 0 and the new 

momentum P; that is, W (0,P). The new coordinates become 

P -- H an energy-like coordinate 

Q C the time-like coordinate. 

(It has been shown before that, in a linac, length replaces time in the dynamical 

relations.) 

The "new coordinate" and "old momentum" are obtained from W by 

oW 
00 

oW 
oP 

y 

Q 

W is obtained by first noting that 

H + q2 sin 0 = P + q2 sin 0 yy - yl3 y[3 

has the character of a udifferential ylt. Designating this as 

* y yy P + q2 sin 0 • 

Similarly, there is a "differential momentum,r, given by 

The notation 

p 

y y[3 - y[3 y 

y[3 
"y (1 - .§.) 

[3 

,.-:--------~- - ~.~- --... ,~ 

V(P + q2 sin 0) - 1 • 

then 

will be used in parts of the subsequent calculation. 
.'. ~~ 

Note that both y"[3 

and pare positive quanti ties in the "upper limb" of the orbit (13 >~) and 

negative in the "lower limb" (13 < 13). *;'( * 
p and y [3 are small quantities 

(of the order of magnitude of q) in a proton accelerator. 
ic 

Y is almost unity 
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(to order qL), having values always greater than or equal to unity. To 

obtain the principal function W, consider 

Therefore 

W J: y (p,0) d0 , 

and Q is obtained by 

Q J: oy(P.0) 
d0 J;-V dHW J; = = 

oP 

With the transformations 

2w TT/2 - 0 

2Ui TT/2 - '0 

J sin2 W 
-~ 

sin Q - sin2 w 
sin m cos w 

and a table of integrals (see Peirce), one obtains 

Q = C 2TTZ = -- = y (0 - '0) ± ~ 
q 

(P + 9
2 sin 0) 

J(P + q2 sin 0)2 -
) 

1 
d0 • 

in which F(k,~) is an elliptic integral of the first kind, and rr(k,v,~) is a 

rare elliptic integra~ which has apparently not been tabulated. Further, 

sin2 W (1 - q2 cos2 m) (~sin2 ill for proton accelerators) 

. 2-
- Sl.n w 

the terminal value of Q at the 0 (w) value of interest. 

For proton accelerators an adequate approximation is 

y (0 -0) ± YEF(k,~). 
q 

The positive sign is used for the upper limb and the negative sign for the 

lower limb; C is defined as zero when 0 = ~. 

This solves the third equation (in dz) subject to the condition C = 0 

when y = y and 0 = ~. The lines of equal Care asymmetrical because of the 
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"invariant" y (0 - '0") term, and are more closely spaced for S > l' than for 

s < ~ in any section. C will, in general, be less than zero for S <~, and 

positive for S > 1'. 

When a phase group enters a section, the early particles (those with 

maximum 0) will thus have a larger value of I c-I than those arriving late, 

but a smaller C+ value than the late particles. However, because a section 

is the same length for all particles in the group (see Fig. 2), the particle 

that has a larger than average value of injection phase (0-) will tend to have 

a lower than average value of ejection phase (0+), and vice versa. Consider 

now the phase group behavior in the (P,Q) coordinate system, shown in Fig. 3, 

where P = (1 - q2 sin~) is the ordinate and Q = C the abscissa. 

In this space, the phase group is undistorted and "flows" along the lines 

of P = constant, which correspond to the orbits. 

Transformation Matrix 

The behavior in P-Q space, which is a complete description, suggests that 

a distribution in y and 0- at injection can be converted to P and Q and 

returned to the y, 0 representation at ejection, i.e. to y+ and 0+, to form 

a matrix which describes the first order behavior of the phase group in the 

accelerating sections: 

6~+ 1 r 00+ 00+ fW 
--j 

I 00- oy 

I oy+ oy+ -6y+ J 6y 
00- o -

, 
, y , i J 

Here 0 is analogous to x and y to Xl , as in an optical matrix, because 

of the coordinate-momentum analogy • Also, if the first order behavior of a 

phase group in a field free drift space of length £n between the nth and 
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(n+1)th section of a mu1tisection accelerator is calculated, one obtains, 

to a first order 

1 -
"1 r6~ 6(r ! 

2TTi, 
1 + A(YS~3 ': n+l I n 

- I 
J {) + 

, 6Yn+1 l 0 I 
L . Yn ..J 

provided that the frequency does not change at the end of this space. This 

matrix is completely analogous to a drift matrix in first order optical theory; 

this is the reason for reversing the phase angle notation. 

The transformation matrix from entrance to exit in one section may be 

obtained from simultaneous differentiation of 

P 
2 = y Y - ~ yS - q sin ~ 

and Q (P + 92 sin ~) } d~. 
J(P + q2 sin ~)2 - 1 

The expression for Q is in P and ~, rather than Y and ~, and requires some 

tedious algebraic work. When completed, the transformation matrix at the 

injection end may be written as 

r 1 [1 - ~-x-] 
P 

- glJ. 

and, at ejection as 

1 
16Q l r 6~+-\ = 

r 

I .2(+ 

[M+l 
6Q p+ 

g[l - ~+il j 
+ 1 l6P j L,6Y+j 6p + g~ -+ , p - - J ... 

where p is as previously noted and 

I-L± = cos f± (I-L± is always positive for I ~± I :s;; 1I) 
cos 2 

g = q2 cos 15 

x± [~± + y p± (1 - IJ.±)] (X± == I-L± for small value of q) . 
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Clearly, the behavior of a phase group is given by 

r 6~-1 [ ~M--I r 6~-1 I 6y+ I 1_ oy- J 
- , 

and the [W- M-] matrix can be analyzed to yield 
~ + 1 rL .\ p+ 0 I 1 -~I 1 +~l 0 

I gp- p-

[ W"M-l = 

I 1 ! 
\ gl-L+ 0 1 0 1 - ~- p-pt=\ I 
I j I 

'.- j ... L. .~ 

in which the first and last may be further separated and shown to represent 

image formation by a convex and a concave lens respectively, as follows: 

1 (l-~+~ 1 1- 1 
1 

.~ 

f p+ 0 I 1 0 I 1 + 1 (l~$+) I 
i gl-L I i gl-L+ 

I = I I I I I I gl-L+ 1 I 0 1 
.J 

gl-L+ 1 ~ 0 1 
L p-r=1 I I L J I 

-' .,J 

and 

1-L , 

11 
__ 1_ ~l-g-~·l 0 

I 

I 01 11 + ~l-g-~ I - -
I 

p 
! gl-L p- I 

p+J 
i I = I ! 

!O I - 1 i - gl-L L 

I 
I I I 

1 I 1 0 , -gl-L-

that is, the injection end resembles a converging lens of "focal length" 

perceiving an object at a position 

= {1.:D 
gl-L 

(recall that p- < 0) 

just outside its focal length and forming an image at a conjugate point 

s; = 1 - --
~-

~-

1 

This is followed by a negative drift space X-/p-g long. The ejection end 

begins by resembling another negative drift space - X+/p+g long, and is 
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followed by the image formation of a diverging lens of (negative) focal 

length 

= 

perceiving an object at distance 

= 1 
gjJ.=t= 

and forming a "virtual" image at 

2 + -1 (q cos '/J ) 

(here p+ > 0) 

that is, in front of the lens and just inside the focal length, because p+ 

is of the order of q. 

The analogous optical system may be summarized as follows: 

1-0- 1-0 -1. A primary object distance = = -gjJ. q2 cos ~ 

-1 
2. A converging lens of focal length (gjJ.-) 

3. A drift space of length d 

4. 

5. 

1 

+ -1 
A diverging lens of focal length (gjJ.) • 

Appearance (not necessarily of an image) at a distance _ (1-0+) 
q2 cos '/J+ 

in front of the converging lens. 

Clearly, the peculiar type of AG system shown in Fig. 4 is present. 

Depending on the choice of the parameters, focus mayor may not occur at the 

output position, and it is equally uncertain that there will be phase compression. 

The focusing is determined by the (oY+/o'/J-) term in the completed [~-] 

matrix. When completely multiplied, this becomes 
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analogous to the formula for combination of two lenses of focal lengths 

fl and f2 separated by a distance a, in which 

1 ~ = 9
2 cos r- (positive, since p - < 0) 

fl p- p 

L = +~ = 92 cos @- (also positive, since p+ > 0) 
f2 p+ p+ 

and 

Q+~- - Q-~+ = a 
q2 cos ~ 

(also, in general, positive) 

so that: 0"/ _ 1. = - L L+ --A-o@- - F f1 f2 flf2 

seems to represent a system which can have a negative value under certain 

conditions. However, there can never be a pronounced focus because the drift 

space is of the order of magnitude q-l and the focal lengths are of the 

order of q, so these are very weak lenses in the case of a proton accelerator. 

The matrix can, under certain circumstances, represent a slightly phase 

unstable condition. An example is the case in which @+ = @- = - " a 

condition which can only be met if , < 0 and the particle spends about as 

much time in the phase defocusing region as in the phase focusing region of 

the tank (see Fig. 3). In this case, the drift space d between the two 

lenses becomes equal to zero and the lenses are of equal and opposed strengths. 

The "distance" (or-/oy-) from input to output, as calculated from the [W"M-] 
matrix, is then: 

= 
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However, 

and 

and one can write 

A(yS) 
Y ~ 

eEL ~os 0"-
mc2CY '6)2'-' /" 

eE' ----=::.w/\...... Y 8 cos W 
2rrmc2 

r 6~+ 1 f' 2rrL 
I 1 + A &)3 

\ 

I I 
j , 

I I 

! 6y+ 1 0 1 
L. J L 

~'c in exact analogy to a drift space • 

1 

2rrL 

r' 
! 

j .. 

6~-

6y-

'1 
1 

I 
J 

2rrL 
A@)3 

Although as yet no detailed analysis has been done of the stepped ~ acceler-

ator, for first order phase group stability it seems likely that some region 

near the "drift" condition just discussed (~ = ~- = - it), which is in fact 

a defocusing condition, will be the border of the phase stability region. If 

phase compression is desired an average orbit should be chosen which makes only 

a small excursion into the phase defocusing region. There will be, as usual, 

some loss of accelerating efficiency by going to values of W much greater than 

_50 to -100 • 

*This was pointed out by R.L. Gluckstern 
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