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Rather than attempt to cover all aspects of work which has been done 

on this subject, a short description will be given of some work in progress 

at MURA. A general approach to beam loading involves several stages of 

calculation. The fields excited in the cavity by the power supply give 

rise via ordinary dynamics to current and charge distributions of the 

beam in the cavity. These current and charge distributions induce fields 

in the cavity which will modify the behavior of the beam. A complete 

treatment will involve completely closing this loop to find, for example, 

the equilibrium situation. It is evident that it must be possible to 

calculate the induced fields due to more or less arbitrary distributions 

of charge and current in the beam. 

The present work is part of a series of problems being undertaken 

by Professor J. Van Bladel and his students in conjunction with MURA. 

The calculational basis was developed by E. J. Cristal and described in 

J. Appl. Phys. 32, 1715 (1961). The excitation of the cavity by the beam 

is being done by F. Kriegler. 

The beam can be described as being an arbitrary distribution of 

charge along a line and this charge can then be made to move with velocity v 

through the cavity. Thus in essence, the cavity is being excited with 

various Fourier components of charge and current. Near the axis of the 

cavity in the neighborhood of the beam, the fields must approach those 

due to this line charge and current in free space. At the cavity walls, 
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however, the fields must be close to those represented by the eigen 

functions in the cavity. Thus one represents the solution as a sum of 

cavity modes and free space solutions for the beam. Boundary conditions 

are satisfied in the calculation and fields are matched in the gap region 

of the cavity to obtain the complete solution. 

Some early results are available which show the cavity voltage which 

is induced as a function of the velocity of current for the fundamental 

harmonic of the charge distribution. These results are shown in Fig. 1 

for the case of the cavity portrayed in Fig. 2. One can see the resonant 

behavior of the cavity voltage as the velocity of the beam passes through 

the "synchronous" velocity. The next step in the process is to account 

for losses in the walls to obtain realistic estimates of the excitation 

of the cavity. In addition, some searching will be done for the higher 

modes in the cavity. 

Discussion 

H. B. Knowles (Yale): Have any measurements been made on the modes excited 

by the beam? 

R. B. Neal (Stanford): Well, in general, the beam will excite the same 

kind of mode in the cavity that the cavity sets up to accelerate the 

beam. In the anomalous case you do get the excitation of other modes 

as well. 

H. B. Knowles (Yale): Was it not tried at Stanford, to coast a beam into 

an unpowered cavity? 

R. B. Neal (Stanford): Yes, the results are perfectly reciprocal. The 

bOClm will set up a wave which is just what could be obtained by recipro-

city. If you calculate the energy loss in the beam it would set upa wave 

Proceedings of the 1962 Conference on Linear Accelerators for High Energies, Upton, New York, USA

284



whose power is the same as the power required to accelerate the wave. May 

I add now a brief comment. I did like to report on a calculation 

that was done by P. B. Wilson, which applies to disk-loaded structures 

in standing wave operation. In the traveling wave case, the equation 

obtained by a number of people for beam loading is given by the expression: 

v=F 1 - e-1"\r;-;:' 
1" '1.Po.tr G -1") 1 - e 

- id 1- 1" 

where 1" is the rf attenuation in the structure in nepers, i is the peak 

beam current through the structure, r is the shunt impedance per unit 

length,P is the input power, and £ is the length of a section. As can 
o 

be seen the energy drops off linearly with current. There is an opti-

mum attenuation parameter for each value of beam current. 

The expression that P. B. Wilson has obtained for the standing 

wave disk-loaded structure looks quite similar. 

( 2 'f6' " 1 + 13 ) .. / 

iR 
s 

2 

where 13 is the coupling coefficient, P is the input power as before, and 
o 

R is (r .£)/2 so this is in effect the total shunt impedance of the 
s sn 

standing wave structure. The energy drops off linearly wlth current, 

as before. The attenuation parameter in nepers in one case is analogous 

to the coupling coefficient in the other case. If you have no rf power 

into the accelerator, the second part on the right hand side term gives 

you energy loss by the beam in passing through the structure, due to 

the excitation. In the same way, this term would be the excitation 

term of the loss in energy of the beam as it passes through. One can 

now maximize energy with respect to i3 by taking 
oV = 0 resulting in 
013 

the optimum value of i3 as a function of the current determined by 

i3 - 1 = X 
2 \f8' 2 

Going to higher currents this indicates that 
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one wants to couple more heavily into the cavity. This is an expression 

that results in zero reflection from the cavity and therefore maximum 

utilization of the rf power. When you introduce a heavy current through 

this structure, the beam, in effect, acts as a shunt conductance across 

the cavity, and in order to stay matched to the cavity it is necessary 

to increase the coupling coefficient. 
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