A STUDY OF POSSIBLE DEUTERON ACCELERATION

E. D. Courant Brookhaven National Laboratory

The acceleration of deuterons in a proton synchrotron may be profitable from the point of view of particle physics. Two classes of experiments suggest themselves:

a) Neutron beams. Deuterons at 30 Bev hitting any target may be expected to undergo stripping reactions a large fraction of the time. This should result in the production of 15 Bev neutron beams with much smaller energy spread and better collimation than is obtainable from proton charge exchange. Such a neutron beam should be a powerful tool for many types of experiments.

b) Deuteron bombardment. Since deuterons have T = 0, J = 1, the bombardment of simple target nuclei with deuterons will single out particular sets of isotopic spin and angular momentum states in a different way from what is possible with other bombarding particles. One experiment of this class, using a separated secondary deuteron beam, is currently on the AGS program. Furthermore, comparison of P-X, N-X and D-X processes may furnish information about the binding forces in the deuteron itself.

The acceleration of deuterons in a proton synchrotron is possible if they are injected with the same momentum at which protons are normally injected, and if the synchrotron rf is then adjusted appropriately. Here the problem of accelerating deuterons in the present proton linear accelerator will be discussed.

289

Non-relativistic deuterons of a given momentum have half the kinetic energy and half the velocity of protons of the same momentum. Therefore, acceleration should be feasible in the mode where the particle spends two periods of the rf in each unit cell of the linac, rather than one as for protons.

In this mode the transit time factors and the radial dependence of the accelerating voltage are both less favorable than in the proton accelerating mode. But since the required accelerating energy is only half of that needed for protons, deuteron acceleration should be feasible provided the products of transit time factors and radial fall-off factors are not less than half what they are in the proton mode.

These factors have been computed, with the parameters of the BNL linac, for both proton and deuteron modes and for all 124 drift tubes, using the theory as given by L. Smith^{*}. The transit time factor is

$$T = \frac{\sin m \pi g/L}{m \pi g/L}$$

and the radial factor is

$$R = \frac{1}{I_o(K_m a)}$$

where I_{o} is the imaginary Bessel function, g is the gap length, L the length of a unit cell, a the drift tube bore radius, and K_{m} is given by equation (12.4) from the aforementioned reference:

$$K_{\rm m}^2 = 4\pi^2 \left[\frac{{\rm m}^2}{{\rm L}^2} - \frac{1}{\lambda^2} \right]$$

Here m = 1 for the proton mode and m = 2 for the deuteron mode.

The computations show, as the results given in Table 1 indicate, that for m = 2 the product RT is at least 60% of its value for m = 1. Therefore,

L. Smith, Handbuch der Physik, <u>44</u>, 341-389, Section 12

290

Drift Tube	T x R		Drift Tube	ΤxR	
Number	<u>Mode 1 (P)</u>	<u>Mode 2 (D)</u>	Number	<u>Mode 1 (P)</u>	<u>Mode 2 (D)</u>
1	0.8250	0,4674	46	0.8652	0.5498
2	0.8339	0.4855	47	0.8665	0.5528
3	0.8417	0.5016	48	0.8677	0.5556
4	0.8486	0.5167	49	0.8689	0.5584
5	0.8543	0.5291	50	0.8700	0,5609
6	0.8597	0.5414	51	0.8711	0.5635
7	0.8642	0.5518	52	0.8721	0,5659
8	0.8684	0.5616	53	0.8731	0,5683
9	0.8192	0.4553	54	0.8739	0,5703
10	0.8257	0.4681	55	0.8749	0.5725
11	0.8315	0.4794	56	0.8756	0.5743
12	0.8369	0.4907	57	0.8765	0.5764
13	0.8417	0.5007	58	0.8772	0.5782
14	0.8462	0.5104	59	0.8779	0.5798
15	0.8503	0.5192	60	0.8786	0.5815
16	0.8540	0.5275	61	0.8793	0.5831
17	0.8573	0.5347	62	0.8800	0.5847
18	0.8606	0.5422	63	0.8806	0.5863
19	0.8253	0.4660	64	0.8811	0.5874
20	0.8296	0.4747	65	0.8817	0.5888
21	0.8337	0.4830	66	0.8822	0.5902
22	0.8375	0.4907	67	0.8827	0.5913
23	0.8411	0.4982	68	0.8832	0.5926
24	0.8443	0.5050	69	0.8836	0.5935
25	0.8473	0.5114	70	0.8841	0.5947
26	0.8502	0.5178	71	0.8845	0.5956
27	0.8528	0.5234	72	0.8849	0.5965
28	0.8554	0.5293	73	0.8839	0.5935
29	0.8577	0.5344	74	0.8856	0.5982
30	0.8600	0.5395	75	0.8859	0.5990
31	0.8621	0.5443	76	0.8863	0.5999
32	0.8640	0.5487	77	0.8866	0.6007
33	0.8658	0.5529	78	0.8869	0.6015
34	0.8429	0.5008	79	0.8872	0.6022
35	0.8454	0.5061	80	0.8875	0.6028
36	0.8476	0.5107	81	0.8877	0.6034
37	0.8499	0.5156	82	0.8879	0.6038
38	0.8519	0.5200	83	0.8882	0.6044
39	0.8539	0.5244	84	0.8884	0.6048
40	0.8558	0.5285	85	0.8886	0.6054
41	0.8575	0.5324	86	0.8888	0.6057
42	0.8592	0.5363	87	0.8890	0.6062
43	0.8608	0.5399	88	0.8892	0.6066
44	0.8623	0.5433	89	0.8893	0.6068
45	0.8638	0.5466	90	0.8895	0.6073

<u>Table 1</u>

Drift Tube Number	$T \times R$		Drift Tube	T x R	
	<u>Mode 1 (P)</u>	<u>Mode 2 (D)</u>	Number	<u>Mode 1 (P)</u>	<u> Mode 2 (D)</u>
91	0.8896	0.6076	108	0.8912	0.6104
92	0.8898	0.6080	109	0.8912	0.6105
93	0.8899	0.6082	110	0.8912	0.6104
94	0.8900	0.6085	111	0.8912	0.6105
95	0.8902	0.6088	112	0.8913	0.6105
96	0.8903	0,6090	113	0.8913	0.6105
97	0.8903	0.6091	114	0.8913	0.6105
98	0.8905	0,6094	115	0.8913	0.6105
99	0.8906	0.6097	116	0.8913	0.6103
100	0.8907	0.6097	117	0.8914	0.6104
101	0.8908	0.6100	118	0.8913	0.6102
102	0.8905	0,6089	119	0.8914	0.6103
103	0.8909	0.6102	120	0.8914	0.6101
104	0.8910	0,6102	121	0.8914	0.6101
105	0.8910	0.6103	122	0.8913	0.6099
106	0.8910	0.6103	123	0.8914	0.6099
107	0.8911	0.6105	124	0.8913	0.6097

Table 1 (Contd.)

sufficient voltage is available for this mode of deuteron acceleration if the voltage level of the linac is equal or even slightly less than that needed for proton acceleration. Injection will, of course, have to be at half the normal energy, i.e., at 375 kev.

Since the variation of RT along the linac is different from the m = 1 case the optimum "flattening" of the tank would be somewhat different; however, since more than sufficient voltage is available the "flatness" may not be as critical as with protons.

Since the deuterons at any point have the same momentum as the protons at the same point, all magnetic focusing parameters will be unchanged. However, the rf defocusing at the gaps will be about twice what it is for protons^{*}. This moves the operating point to the left in the stability

* The defocusing field at a gap is proportional to $E_0 RT K_m I_1(K_m r)$; $E_0 RT$ is half what it is for protons, while $K_m I_1(K_m r)$ for m = 2 is about four times what it is for m = 1.

292

diagram (Fig. 20 of the above-mentioned reference), but probably not too far to impair good operation.

This mode of operation may be tried by seeing whether, with the preaccelerator at half normal voltage, the H_2^+ ions that always are produced to a certain extent in the ion source would be accelerated.

Discussion

- N.D. West (Rutherford): I would like to point out that H₂⁺ acceleration was tried with the Nimrod injector. It seemed to us that the threshold rf field for acceleration was not very different for that of protons. We only spent about 10 minutes doing this and have not further investigated this.
- J.P. Blewett (BNL): Let me point out another difficulty with deuteron acceleration and that is that neutron levels and activation levels would be greatly increased from deuterons hitting the drift tubes.