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R. L. Gluckstern
Yale University and Brookhaven National Laboratory

I. Introduction

The phenomenon of beam blow-up in traveling wave electron linear
accelerators™ has caused concern as one has attempted to increase the
beam current and pulse length. Among the explanations of the observed
phenomenon is one presented by Wilson™ in analogy with the theory of
backward wave oscillators for accelerating-type fields. This explanation
suggests that means exist to reduce the serious consequences of the blow-
up by modifying the synchronism of the beam and backward wave deflect-
ing mode. The effect discussed by Wilson takes place for bunched or un-
bunched beams.

A similar concern has been expressed by Leiss and Schrack® who
point out that a bunched beam may have a harmonic which resonates with
that component of the deflecting mode traveling with the beam velocity.
For conventional iris-loaded guides, the deflecting mode frequency band
is approximately 50% above that for the accelerating mode. If the beam
bunching is, for example, at the 4th subharmonic of the accelerating
mode (as it is at present for the AGS improvement program), then the
6th harmonic of the beam will be approximately resonant with the deflect-
ing mode. This phenomenon clearly depends on the details of the mode
spectrum for different values of B and can probably be influenced by
transverse focusing and by perturbation of the deflecting modes where
necessary.

The present work is an attempt to formulate the two corresponding
effects for the case of a standing wave accelerator (proton linac in the
case of the AGS improvement program). We will not treat here the addi-
tional serious effect of beam loading on the accelerating mode. (In this
case the steady state effect can presumably be compensated for by ad-
justing the power source to supply additional power at high beam cur-
rents; the transient effect will require beam injection while the fields
are rising in an appropriate way. )

II. Cavity Fields

We shall consider an iris-loaded guide of length L = NL,, where
L, is the cell length, as shown in Fig. 1. The deflections will be
assumed to be confined to the x - z plane, where z is taken as the
longitudinal direction. In this plane the jth normalized standing wave

186



Proceedings of the 1964 Linear Accelerator Conference, Madison, Wisconsin, USA

Fig. 1

deflecting mode can be written, because of Floquet's theorem, as

N-~1
j = Z . 4 ' 1 .
EX (x,0,2) PJn (x) sin kan ,
n=o

I Y = ' . _
Hy (x,0,2) Z an {x) cos kjn‘:’ s {2, 1)

EJZ (x,0,2) = Z Rjn (x) cos kjnz ,
where

kipn = ky*2nw/Ly, ki = jw/L. (2.2}

If we define the gspace harmonic of concern as that for n = 0, the

important components of the fields in the vicinity of the axis may be
written as

EJ ~ P‘i sin k]-z

X

J ] : . {2. 33
Hy QJ cos sz { )
. .
Ez ~ X RJ cos ka .

The fields are normalized such that
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Vx Bl = (wj/ci)—ﬁj, | VxHj = (wj/C)Ej,
deE /de = 8‘13.,

and the actual flelds are written in terms of thé normalized fields as

Zj:Cj(wEJ@, H - ng&)HJGc‘), (2. 5)

(2.4)

where Cj and Dj are related in the absence of beam by

D; = (ec/w.)Cj, Cy = "‘U‘C/‘”j) D < (2. 6)

Relations can be obtained between P] Q;, R. via Maxwell's equations.
One must,however, take into accounf the component H, in obtaining

these relations, since the modes are not purely TE or TM, but are
hybrid modes. ™ Let us write:

Qj = Fj Rj, Pj = Kj Rj' (2.7)

In the presence of a current pulse of the form
T & t) :f TEwle "dw , (2.8)
Bee) . 1

it can be shown that Cj (t) satisfies a differential equation whose solu-
tion can be written in the form

. iwt e : ,
C; = —éf dw —HE— —/‘.j Sw): B &av. . (2.9)
w - wj o

The poles are moved into the upper half w -plane because of losses.
Assuming the losses to be small, one can write for late times (after
the beam pulse has passed through the cavity)

Cj(t) =ﬂ—(7r/e)%lwtf}('°W' dv+r‘c]

= -(ec) Dcos(w t+®) . .
N | (2. 10)
D; (t) = -wc[i 1w f;;(x,u) EJdv+c.c.]
= DJSll’l(th"‘mJ).
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In the presence of losses these fields will decay at the rate
W .
-4 %
2 Q1
e ‘ . {(2.11)

The transverse angular impulse given to a particle entering the
cavity at t = {,, in the presence of deflecting fields can be calculated in
the approximation that the trajectory is along the longitudinal axis. Orne
then has

1
Ao = fe/pv) dz [EX - BV Hy] ' |
J to=t zlv
o
L (2.12)
| -1 ﬂ ,
= <% o . 9 / 7 vy Y
= (e/e€pc) Z wj dz Rj cos kjé DJ sin (w, z/7 WJ/ ,
J 0
where
. = Cty 7O, (2,13}

Since one is interested only in those modes for which k; and w /v are
almost equal {(phasc velocity of deflecting mode approximately ile same
as beam velocity), one may write

Ao, =2 (el./epc) Z {w o }ml D. R, sin (o,/2) sin (. - =./2),
: ] 13 J B ]
(2, 14)
where
of . & (k- wij) L {2.15)

is the slip of beam relative to the wave in its transit through the casvivy.
If one adds angular impulses due 1o all effecis, the beam will be lost
when

A,bo ~ 27a, i2.16)

where A - is the wavelengih of the transverse oscillation ard a is the
bore radius.

: el
The remaining quantity reeded for our aralysis is j (w). Assum-~
ing a single bur.ch of spatial dependence f {z) {symmetric about z = 0
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for convenience) whose center follows the trajectory z = vt, x = x (),
one has

TEH = LAt s[x - x (w] Siy) ¢ [z Sy (- tm)] [i’”x ) +T€v]

where At= 27/ w is the separation of beam bunches and Iy is the
average current. riting

. -4y w i—g’iu
ffu) = /dwe glw), glw) :’/‘due f {u)
2T Vv
- @ (2.17)
one: finds, for narrow bunches,
= 15 _ : , ] -lwiy, ~iwz/v
i E w) = " glw) 8{)4 - x {ty, + z/V} S(V)[ X (b tz/v)/v+ k} e
o

(2.18)

The normalization is such that for a delta funciion bunch g {(w) = 1 ;
that is, g {w) is the relative harmonic content of the beam pulse. The
relevant integral in (2. 10} is therefore

]_?( X, w.) c T dv =

J

i, z/v . i
Go/wovr g (w) e T [3y + 2/ B 6 (ty, +2/9).0,2) +

I (« ) y
+v E) (g, + 230, z)] (2.19)

In the limit of small transverse digplacements, one then finds from
(2.23, (2.7

(""w) Edw=

1.
-iw.t ~iw;z /v
I, /w)g(w.) e jm R. dz e . [K (x/v) sir k.z +
0 o J ,] .] VA > ]
o
B f L
Lot jot z/L
) . ~ > S ( “_ ) J m ﬂ o Fi
+ x cos kJZ] (I,/2 w Fg ,,wj} 2 RJ dz e ]
‘ o’
{X {z} - Kj iw! (z)] . {2.20)
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{II. Nonresonant Beam Blow-up

If one considers ithat the beam hag fransverse displacement and
velocity unaffected by the cavity fields in calculating the contribution to
(2. 20), then the contribution of successive bunches will depend on their
relative phase, and build-up will be serious only if there is a resonance
between a beam pulse harmonic and a defelcting mode. This phenomenon
is treated in Section IV. If no resonance exists, one must consider the
effect of the field itself on the irajectory in order fo get a significant con-
tribution to (2. 20). This is the effect considered by Wilson, and the one
we shall treat in Section III for a standing wave linac.

In order to evaluate (2. 20), we must find the trajectory of thai par-
ticle entering the cavity which is oscillating with fields

C; (1) - (ec)_1 D: cos(wji: + 01)

J ] |
(3.1)
(t) = Dy si t o P)
D, (1) D; sin (wl 93’ ,
at the time t,.,. According to (2. 12} one has
Z
L0y = x'(z) = (e/pv) f dz [Ef TRV Hyj i = + ol (3.2}
O ) T tm T ZJV

Keeping only those wave components traveling at approximatfely the same
velocity as the particle, one finds
. z
-

! (Z) o~ - Z (e,/ép C @Jk:‘) { {Dk ‘“{m + Z/v) Ey} _f dz Dkﬂ:tm + 7 i) {@EIZ{/ ax)}
K

0] O

o 3 { fw. ML/ -  cos ST, - - cos
2 {e/2epc) z Dy Ry wkML,@Lk Kk) [co:, (@lk_z/L ‘L!!k) cog k,f/k] ,

k
(3., 3)
x (z) = (e/2epc) % (Dy ka wk}(L/@@k - .Kk)(L/Oék) [sm (Oék z /1 - Wk)
+ sin "Pkm ((Xk z /L) cos \,;;kqﬂ s (3.4
where
Ve = owp bt Ty (3. 5)
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T.h@ljf;.onresonant character of the values of 1 implies that only the
i :

e component of (3.3) and (3. 4) is needed with the factor e - tm
in (2.20). In this approximation one has

. ilwy - wj)tm+i¢k
[j - Eldv = (e I,/ 8w € pc) g c;%) % e (DkRij/wk)(L/Olk - Ky)
L .
iujz/L. ~iot oz /L ~i0¢ z /1
xj( dz e [(L/otk}(i & K - - O{k z/L) - K. ile - 1)]

o
- Mk k 7 m
= 2 Mjk e v e L Dk e . (3.6}
k

where M;,. and m,, are the amplitude and phase of all the factors not
appearing expliciily in the lasi form of (3.6). From (2. 10), the pulse
entering at t, contributes an increment to the field already present,
which is givern, including the decay of the field already present, by

J

ADj =227 % Dy Mﬂi. sin Ewi i+ { wy wj) tm + (Dk + mjk]

- (wj At/2 Q) D, sin (‘wi 1 + ¢3> . (3.7

This is our result. ifis, of course, dependent on the mode spec-
trum (w. vs j), the timing of the pulses™ (?im}ﬁ, the slip {@. vs i), and
all the other nonexponential factors appearing in My, Paﬁ;‘}cu]_ar’}y in
cases of low group velocity @ﬁwk close to w.}, one should proceed direct-
ly from (3.7) on a numericsal basis, ’

We shall try to reduce (3. 7) analytically by making further assump-
tions. In particular we shall assume a siteady state solution for which the
contributions for k # j in (2.7 average fo zero.

i

In this case

! = . . g fes o+ @, = AP R / Y i
ADJ ‘t) 27 ¢ Mj; Dy sin fayt Qj Fmy;) ‘W‘wjﬁ wOQJﬂDJ sin (wjt +0),

(3.8)

"We have already assumed that the pulses are nonresonant and have
ignored the term in {w, + w. )t . If they are resonant, the present
considerations are modified’by a facior of order 2.
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which is equivalent to the relations

AD. TWw.
—d = 27 ¢ M. cos mi: - ——dL (3-9)
Dj Jd JJ w Q. ‘
(S
and
AQ)J = -2 TcC Ml} sSin mJJ . (3. 10)

From (3.6}, one finds

M‘jj cos myj = (e IO/Swoepc) g (wj) (R?/u)j)(L/& -K) L
1

xRej dx [i (L/ot - K) (1 - ei@ix) —o!.xelax L/o{}

6]

= (e IO/4 W e pc) g (wj) (R%/w (L/ot - K) L/ E:L/@c (1 - cosoat - %sinm) -
3

j)
—K(l—cosot)/Z] . (3.11)

In the approximation of small coupling holes it can be shown that

L
— >>
& K. (3.12)

Equation (3. 11) then becomes
M;i: cos ms; = (el /2773@:,» epc)g(w)(Rz/w)ng () (3.13)
3 i "o o (IO 2 'Y '

where

1 - cosex - (&{/2) sine

g9 () = (3.14)

3
2 (et/7)

is the same function as that defined by Wilson, and has a maximum value
of 1,04 when ot = 2.65.

The "'starting current' for the beam blow-up is therefore given by the
vanishing of (3.9), that is for
3
riepwdi (3. 15)

3
g9 8 L R?Qj

ely =
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The quantity Qj R? is related to the ratio of the square of the electiric
field gradient along the axis to the power loss and therefore has the
gereral form of a shunt resistance per unit length for the deflecting mode.
Specifically, if one defines rp as

[(C/wj)fj dz ( @E‘;/@x) cos k. 2]2

A L % Power l.oss

s (3. 186)

and notes that Qj may be written as

o 2
(wJ 61/2J EE]E dv

Power Loss

Qj = = (wj € /2 Power lL.oss) (3.17)

one has
“{clw:) Z./2, (3.18)
where
Zo = &fp /€ = 377 ohms . {3.19)
This leads finally to
w3 Mc? (cf %)BX

ely, = 5 . (3.20)
2 g9 gr;e 1

As an illustration of the crder of magnitude of {3.20), we shall
apply- it to the first iris cavity in the proposzed new AGS injector where
we use the following parameters:

MC2 = 940 Mev

2we/l w. = 0.25m

B Y2 o.s

¥ = 1.25 (3.21)
gy ~8~ 1

I. ~ 3 m

5 ~ 20 megohms/m
],eéding to

Iop =~ 2 amp. . ‘ {3.22)
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Severa! comments should be made at this time:

1} The value of rg has been chosen typic cal of accelerating modes.
It will probably be considerably smaller since the square of a transit
time factor should be included to correspond t o the particular space har-
monic used. This will lead to an even higher "starting current.'™

2) Resonance between the deflecting mode and the beam bunch fre-
guency will lead to a reduction of order of a factor 2 in {(3.20) and (3. 22).

3) If the current is higher than the limit in (3, 20), the build-up
time can be estimated from (3. 9) with an agsumption for the order of
magnitude of the ''noise' in the cavity. The result will be of the form

Tg = - Const, ° (3.23)
ip = I, starting

4) Although the present calculation is for a standing wave linag,
the form of Wilson's resuli for a traveling wave linac car he obtained by
going to the limit of large L in {3.6). The sum cover k becomes an
integral over k and a sum over beam pulses {m} leads to

l(wk - w.)m At
Z e ) ] = 2w 8}[(wk - At]
mn J
-1
o~ [d N oL N
- <‘a’1‘f:> ——-%-m &k ~ ;}) - .V"g Sk - 1. (3.24)

The factor M11 in (3.6} must then be muliiplied by the factor

(w L/mwv,) and the self-consist m condition AD/D = 1 leads to (3.20)
mmtlpheo by the factor v Q /w I. . Thisg factor, which is the ratio of
the decay time to the filling t1me is not surpriging when one goes from
a standing to a traveling wave linac. The n2t resull for the siarting cur-
rent is an expression of the form

W, Me? BX (‘&"g:’cfr (c/w)?

. Q
e I, ~ 3 (*i’
go g L

St

) (3.25)

which is identical in its dependence on the parameiers with Wilson's result.

*An estimate of ry has beerl made for a model of independent cells. This
leads to  ~ 1 megohm/m and gives a stariing current of 40 amp. See
Appendix.
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5} The contributions from k # j in {3.7) may not be negligible, as

indicated by the traveling wave reﬂul‘a;. However, the factor Mjk has a
structure which confines contribuiions to the vicinity ot,j ~oL ~ T An

estimate of the effect of the term
(3. 26)

(w w:)t

k- ) m
for an adjacent mode can be made by taking tm to be the build-up time,

which ig assumed to be of the same order as the decay time, i.e.,

~ Q/wj . (3.27)
For this choice

(wk'wj)tmmngj/ij' (3. 28)
The contributions will therefore be confined to the mode k = j or will
e‘x!end to the neighboring modes according tc whether the parameter in

3.28) is greater than or less than 1. 1If it were not for the factor Mjk’
one would then multiply (3. 20) by the facior Vg Q/w . L as we did in
(3.25) for the traveling wave case, ]

6) Proper numerical investigation of this phenomenon should be
performed starting with {3.7), with an appropriate deflecting mode
spectrum.

7) Motion in the y direction has been neglected. If this is taken
into account, the cavity coscillations may ke induced with rotating polar-
ization. This carn, of course, be prevented by destroying the azimuthal
symmetry.

IV, Resonant Beam Blow~up

The other possible serious efiect prrfe“*iougly mentioned occurs if
one of the harmonics of the beam frequency resonates with one of the
deflecting modes. In this case the transverse motion of the bunches
induces cavity fields which may then bu L“d up from successive pulses.
Since the build-up leads to deflections, this phenomenon involves not
only the transverse focusing system, but the entire iransverse history
of the beam in preceding cavities,

According to (2.20}, the m%h beam bunch, traversing a cavity with
average transverse displacement and angle given by X0 and X'm , gives
a contributionr to the current-of
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[t6w) Fa -

= (I 2w ) R; (/L) e ] m(’x - K. ix! )(eid‘- 1) (4. 1)
1o g/2w,) R; m jixp . (4.1

The contribution to the field is therefore

iwj(t~tm)+id~/2

(4.2)
The factor ga = sin (a/2) indicates that the effect is appreciable only
for those deflecting ‘[‘AO’JL&“ with phase velocities clobe to the beam

. da by o
velocity. The factor e 9 indicates that the contributions of succes-
sive buncheg will be out of phase unless

w A/27m = w/w = s, {4.3)
d J o

that is, unless the ratio of defiecting mode frequency to beam frequency
is close to an integer.

The angular deflection due to the presence of deflecting modes is
giver by (2. 14). If ore also includes the effects of the focusing forces,
the coupled set of equations {2, 14} and (4. 2} allow one to follow the
progress of the effect from caviiy to cavity and from pulse to pulse
numerically. Eﬁhe effect treated in Section 11l may even be included by
adding (3. 8) to (4. 2}3 it is clear that in this case the effect depends
even more sensitively on the deflecting mode spectrum.

An order of magnitude estimate of the effect can be made in the
steady state condition (consiant values of X from pulse to pulse)
by iwclud*ng the field decay due fo iosses. The 1r"’1e]d after the entrance
of the n'! bunch is then

{ iw1 (tutﬂ)ﬁ-i@;{f"
™. { = T , f o - -
Dy () {(meciyg L R:’ Y wo) Re e {x KJ ix")
co i . - -1 ¢ ]
E 277‘m[1<&)3/w0 s) \Wj/ZMOQJ }
. , e
m=o0

Lt~ t)tiea/2

= {cTo g LRjga/29,) Red © (x - K; ix }}0(4.4-)}
' (w - /ZWQJ‘Bml(w/w -3
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Since Q; will normally be much larger than wj/w 5 ™ sl , (4.4) can
be reduced to

K; x' cos xj - x sin Xj
5 (4.5)

D; (t,)'::(vrclogLRjgs)[ wj-sw,

where

X; = wylt-ty)+ «/2 . (4.6)

The deflection of the n'® bunch in this field is given by (2. 14).
The cos X . term in (4.5) corresponds to \I/j = olj/Z + /2 in (2.13),
while the sin xj term corresponds to \Pj = elj/Z. One therefore has,
using (3.18),

Ax' = x! ; e 1o g g5 L/p)y /Q)/ (wj - sw ) K (wy/e) (4.7

The increase in transverse amplitude due to this angular deflection is

2
Axelogg?)ijrl K; (wi/c)
. 2 )
i 2 Mc Bij(wj s W)

AAy = (4.8)

For the independent cell model used before, and the AGS improvement
program parameters, including I, = 100 mA, one finds (see Appendix)

3 x 10"
AR, ™~ TTsw - meters . (4.9)
(1 --—7)
J

Thus, for a resonance accurate to 10“3, the increase in iransverse
amplitude from this cavity is ~ 0.03 cm. Since it is unlikely that this
resonance will persist to an accuracy of 10 ° for several cavities, the
effect appears not to be serious. If it should turn out that the resonance
is more serious in gne of the cavities, a perturbation of the deflecting
modes of order 10 ° can undoubtedly be readily provided for.

In summary, therefore, it appears that the transverse motion of
the beam can lead to a build-up of the deflecting mode if there is a reso-
nance between the beam and deflecting mode frequencies. A rough esti-
mate of the effect indicates that it is small, but numerical estimates
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using (3.8}, (4.2 and (2. 14) are desirable. For these and other reasons
it is recommended that both the accelerating and deflecting mode spectrum
be measured carefully at several values of B.

We have of course neglected the variation of cell geometry within a
cavitv. This should reduce the effects discussed in this paper even further.

V. Summary

We have calculated the build-up of deflecting modes due to two
separate causes, The firsi {Sectior III} is the nonresonant effect that
comesg from the defleciion of the beam by the transverse fields already
presert. These deflections induce further transverse fields which have
a component in phase with the original field. The appropriate equation
governing the behavior of a bunched beam dus to this effect is (3. 7)., with
T\/[m and mj, defined in (3.6). For an approximate treatment of the steady
state behavior, (3.20) is relevant. A further approximate calculation of
ry is contained in the Appendix, ard the corresponding current limit is
giver in {A-12),

The second effect treated (Section IV) is the resonant build-up of
the deflecting modes due to the fransverse oscillations of the beam. The
average dispizcemsnt and angle of a beam bunch with respect to the longi-
tudinal cavity axis induces a transverse field, Successive bunches can
butld up thig field if there 1s a resonance beiween the transverse mode and
on# of the harmonics of the beam. The appropriate equations governing
the buzj.dmup of these coupled "displacement-field" oscillations are (4, 2)
and {2.14)., For an approxi te treatment of the steady state behavior,
(4.5}, (4.7) and {4.8) ar: vant. A farther approximate calculation of

(Q ig corntain=d in the Appendix, and the corregponding limit is given
11“ \A -10),

itatior of the combination of the above two effecis
F"OV" this purpose the field increment per pulse

it is clear that both effects limit the contribuiions to those modes
which slip no more than 180° behind the beam. I addition, the second
~ffect is significant only if the resonance exists., Fogr these reasons it 1s
imporiant to measure the mode specirum for the cavities accurately for
both the accelerating and defleciing bands at several values of & .

Estimates of the magritudes of the two effects discussed have been
made for the AGS improvement program parameters, Although these
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are extremely crude, the values obtained are not at all serious and
should noi prove troublesome,

We have not treated the case of two transverse dimensions, nor
have we considered the effects of the induced fields on the bunching of
the beam pulses. Moreover, we have treated each cavity as having a
constant value of v and a uniform cell geometry. These effects will
hopefully not be serious. Besides, one always has the possibility of
perturbing the transverse modes to modify transverse effects. We have
also not considered the possibility of longitudinal beam blow-up.
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APPENDIX
We shall estimate ry and Q for the deflecting modes under the
assumption that the cells are approximately uncoupled. In this case the

fields in the mth cell are TMllO of the form

EE’Z = A.%n Jq (pll r/b) cos ©

i . J ! . 7
H(JP = Am I (P11 r/b) cos @ (A-1}
- Iy by v/
HI = A sin 0 ,
v m Py rib
where
j = J = &l .
A A cos {m k’j L,) s b Py (v/wj s {(A-2)

and Py is the first zero of Jl" The Fourier decomposition of E]Z can
be shown to be
. NulsinkjnLo
E) = J, {py, r/b) cos 6 A’ z E— cos k. z, {A-3)
7z 1 11 O k ].J .
n=o m o 7

where ki . is given by (2.2). The relevant deflecting mode (n = 0) in
the vicinity of the axis is therefore given by

E), = x (py; AL g;/2 b) cos ki z . (A-4)

Comparison with (2. 3) indicates that

_ i A=
RJ = wj AO g1/2 ¢, {A-5)
where
_ ifwk‘] LO“ (A 6\
1 kLo

The quantity A‘zj is obtaired from the normalization condition (2. 4).
It can be shown fo be

; 2 2
12 [ 2 2.2 2 )
AO = | 4 wj/WLpll c” J, (pll). o ZUJJ_/Lp11 c . {A-T)
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From (3. 18) one has

2
I
3 9 Z, 81 (w./c)
& - LR /o) g,z 22 10 ] (A-8)
J J 4;p11
For small holes one can show that

2 /b2 (A-9)

K‘M/cw(p11 4B ) (a/b) | _

where a is the hole radius. Equation (4.8) can then be written as

2 2 2
A elyZoLigelgs(wi/c)pyya

AA, = (A-10)

: 2 2_ .2
i 32Mc” (1 swole)ﬁ y b

In order to obtain n, or Q. independently, one must calculate the
power loss. This is obtained from the square of the tangential magnetic
field on both the guide and cell walls, and turns out to be

2
Zo\ (g1 L, 1 2 8lwi/c) [Ly+b
1= (3) () () - 9t 50 ()

where & is the skin depth. Equation (3. 20) then becomes

2
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LEISS: Does not the resonant beam blow-up always contribute in a
serious way?

GLUCKSTERN: It does inthe sense that the nonaxial component of the beam
current can be increased by the response of the cavity. However, this
depends on a resorance between the transverse mode and a multiple of

the beam frequency. In addition the presence of transverse forces may
modify the build-up.
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E. KNAPP: Isn't the value of shunt impedance used (20 Megohms /meter)
high?

GLUCKSTERN: Yes. As a first conservative calculation I took a value
comparable with the accelerating mode, However, for the transverse
one should take the appropriate space harmonic with a phase velocity
equal to that of the particle. In this case the ''starting' current is in-
creased by a factor of order 10,

WALKINSHAW: Shouldn't one include other field components for the
transverse modesg?

GLUCKSTERN: Yes. Although the only components which do not vanish
in the x-z plane are the ones used, the relation between these components
depend on the other components--in particular, on @HZ/ dy. This has
only been taken into account approximately in the present calculation,

LEISS: Isn't it true that both effects (resonant and nonresonant beam
blow-up} are present together and are part of the same effect?

GLUCKSTERN: I do not believe the two effects are the same, but both
effecis should be taken together in any proper calculation.

LLEISS: Avren't there important resonant effecis in your calculation of
nonresonant beam blow-up ?

GLUCKSTERN: I don't believe that these modify the resulis by more than
a factor 2.
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