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APPLICATION OF CALCULATED FIELDS TO THE
STUDY OF PARTICLE DYNAMICS

D. A. Swenson
Midwestern Universities Research Association

We have used a computer program by the name of PARMILA to
study certain aspects of the phase and radial motion of particles in linear
accelerators. Until recently, we have used expressions for the transit
time factor and the radial impulse at the gap, which were derived from
the simplest approximation of the field in the gap, that is, a field which
is uniform across the geometrical length of the gap, and zero in the drift
tube bore.

We have a great deal of information available to us on the actual
distribution of fields in the entire linac cell in the form of output from
our MESSYMESH program. It is possible to reduce these calculated field
distributions to a few coefficients which reflect more precisély the effect
of these fields on the particle motion.

I should say that this work was done primarily by Fred Mills and
Don Young at a time when I was absent from the laboratory. More recently,
I have gone over this work, and I have incorporated it into the PARMILA
program.

Let & (r, z,t) be the electric field vector at radius r, longitudinal
position z, and time t. The fields through which the particles travel,
that is the fields near the axis of the linac, can be expressed in terms of
the axial component of the electric field on the axis, & (0,z,t). At this
point we take the time dependence to be sinusoidal and We define E, (z)
so that :

%(O:Z»t) = E_ (z) cos (wt + @) .

Z

It is instructive to compare the aciual field distribution E, (z) with
the simple uniform distributions of field. Figures 1, 2, 3, and 4 facilitate
this comparison for typical linac geometries at 50, 100, 150, and 200
MeV. Both curves in each figure are scaled so that

L
_11:f Ey (z) dz is unity.
o

Maxwell's equation, in gaussian units, for cylindrical coordinates
in a charge-free space, with the further restriction that B,. = B, = Eg =
yield the following set of norntrivial equations.

0

r VA

328



isconsin, USA

Proceedings of the 1964 Linear Accelerator Conference, Madison, W

ov og

e/

26t0O¢g - NNY

AN 002
 a4nbi4

8210¢€ - NNY
AN OOl
2 d24nbi4

ov og

2/7

OE+0E -NNY

AN OGI
¢ o4nbiq

2/1

120€ - NNy
AN OS
| 94nbiy

329



Proceedings of the 1964 Linear Accelerator Conference, Madison, Wisconsin, USA

aEr aEZ ) 1 dBG
- = - — (1)
aZ ar C at
OE
1 0 z
3 (r Ep) + 3 0 (2)
oB OE )
N 3)
oz S, E
1 9By 1 9B, "
r 9y ¢ ot

We now assume that we know the fields on the axis of the lirnac
[ e., E’z (0, =z, t)] , and we attempt to get a satisfactory expression for
the fields off the axis in terms of E’z (0,z,t). We employ an iterative
procedure to get the nth order field in terms of the n - 15 order solu-
tion. This procedure yields the following expressions for E’z (r,z,t),
&r {r,z,t) and By (r,z,1).

2( 32 &, (0,21
€ .o t) = & (0.0.1) - L(a £, 0,2,1)
Z Z 4 372

2 ,
1 0 52 {0, z, t) >

. L L (5)
c? 912
+ terms in r4 and higher
’ - a&z (0, z,1)
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We now proceed to use these fields fo evaluafe the energy gain and
the radial impulse imparied to a particle on traversing a particular lirac
cell,

The energy gain AE is

AE = / £ ds = [(&Zdz+ &Fdr)
path path )

which can be written, with the fields above, as

2 Y { ce 4

r’2 g é’z 0, &, %)
AE = & (0,z,t) dz - —
4

z a:’zz
32 & (0,z,1t) d& 0,2z,
Z 5 dz —f =
ot

dr . (8)

Do

. L
2 dz

Before evaluating these integrals, we make a few definitions. We
define the cavity length L. and the average awial electric field EJ by

f dz = L
cell

and

fEZ {z)dz = Eg L.

We define the origin of z by requiring

We define the transit time T by the relation

sz {z) cos ,ém,%,;z_, dz = Eg LT
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and we define an S factor by

. . 2 Tz
'/‘zEz(z)sm—L dz:EOLZS.

I will outline the evaluation of the first integral on the right-hand
side of Eq. (8) to illuminate the meaning of the terms ¢A and S.

/&Z(O,z,t) dz = /EZ (z) cos (wt + @) dz

Let il—f = \Tl (1 +ol), where V_ is the velocity of the
synchronous parficle, No%ing that wi = 2 7£Z~(1 + 04}, we write

wheres ¢ =

<3N

N . L 2Tz 2w oz,
f&z {0,z,t) dz - /Ez (z) cos ( T + 0+ T ) dz

2 Mz 2 T 7% . 2 w2 . 27?2-04]
= ( - 08 q mm——— e 2 | £ sin i -
fEZ (z) [COb { I + @) co in { + @) sin dz

) 2 Tz N 2Tz
= sz (z)[(cos SR cos @ - sin [ sin 0) -

2 70t 2T z Tz .
- L — {sin T 2 cos ¢ +cos 2 I 2 sin {D)] dz
where we have let cos 2““"53(@ = 1 ard =zin 2 Trlza . 2Tz
; ) L

For a symmeiric gap where E;, {2} is ar even function of z, two of the
four terms in the latier expression integrate 7o zero, znd we are left with

f&z {0,z,t)dz = Eog L (T -27 e S)cos 0.

The factor (T - 27 = S) can be interpreted as a transit time factor for
particles whose velocity is differenf from the synchronous velocity {i.e.,
for of # 0).

Wher. we evaluate the other two integrals on the right-hand side of
Eg. {8}, the expression for the energy gain for ore linac cell is
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AJ=EL{(1+ Y(T -2 met S) cos @ -
2BZX

rrimw T sin Q)} (9)
B

To evaluate the radial impulse impartied to the particle on crossing
a gap, we write

V By
Apr=/ |Fo| dt = e (& - ——)dt. (10)
path path '

Using the expression for the fields given i» Eqs. (6} and (7), and elimirat-
ing third and higher orders in the variable », we find the expression for
Ar' to be

EOL
Ar' = - SN - rsin @ (T - 2me S) (11)
m, Y By
Ap,
where Ar' = —— .
mg ¢ By

It is of interest now to compared the factor T_ - 27 & S, with the
transii time function for a uniform field distribuiiorn. The analyiic ex=-
pression for the transit time factor for uniform field distribution per-

mn_n

turbed by a bore hole of radius 'a ,

27 x
AR < ¥ )

. sin B ‘. -
u G r (27 e '
can be expressed as
(Ty -2 moe S ) 1 (;2“115’ \ {12)
u 0] Xg L /

where
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and & has the same meaning as above.

First of all, we note that the radial dependence of Eq. (12} is the
same as that of the first term in Eq. (9). Secondly, it is of interest to
compare the T, and S, obtaired from the actual field distribution with
the T, and S, derived from the uniform fizld distribution. A com-
parigon is given in the Table I for some typical linac geometries ranging
in energy from 2 to 200 MeV.

TABLE I

MESSYMESH Energy L G A T, S, T, S,
Run Number {(MeV) cm ocm oom

25003 2.16 10 2.5 1 0.7354 0.0727 0.8198 0.0280
30243 18,21 29 10 1 0.7726 0.0663 0.8066 0.054¢6
30421 49,80 47 16 1.5 0.7775 0.0655 10,8126 0,0535
30428 97.173 64 25 1.5 0.7101 0,082329 0.7641 0.0682
30430 148,05 7 23 2 0.6262 0.1055 0.7139 0.0811
30452 195,41 84 39 2 0.5636 0.1183 0.6786 0.0902

~

From the Table I, one can see that the T, ig from 5 to 16% lower
than T, and that S, is 20 to 30% higher than Su with exception of the
2 MeV results in which S; is 150% higher than Su" The actual field dis-
tributions, shown in Figs. 1 through 4, were obfained from the lazt four
MESSYMESH runs presented in Table 1.

I have made some exploratory runs to determine the transverse
acceptance and the phase acceptance for an eight-tank 200 MeV linac., A
brief description of the linac-is given in Table II. It is described in more
detail in MURA Technical Note 472 by Young and Austin., The results of
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these investigations, which 1 think are selfi-explanatory, are shown in
Figs. 5, 6, 7, and 8.

TABLE I

Tark No. 1 2 3 4 5 6 7 8
Energy (MeV) 15 46 75 102 128 153 177 200
E (MeV /m) 2.0 2.8 2.8 2.7 2.6 2.5 2.4 2.3
Length {m) 9.4 14.8 14.4 15.4 16.3 17.1 17.6 18.5
Power Actual 2.25 4.95 4.92 4.82 4.96 4.96 4.95 4.79
(MW)
Total Lengih 123.5 m
Total Power 36.6 MW

WALKINSHAW: If you ignore the change in velocity of the particle across
a gap and do the analysis as you have done, ther you can show that the cor-
rect formula is Ej L times that next term in the brackets 1, of some
factor of r, then the transit time factor and then cos 0 . I don't under-
stand where the term in « S comes in uniess you are assuming that the
particle velocity was changing as it crossed the gap.

SWENSON: The factor (T - 2 & S} ig effeciively a transit time factor
for particles of energy E near the synchronous energy Eq. 7T is the
transit time factor for the synchronous particle. The parameter o is
defined in the text, butf is a function of (E - E4). & is zero for B = Eg.
MILLS: lL.et me make some comments aboui this work. About four years
ago when we became interested in linacs we began looking mostly for
means for computational studies. Our starting point was the report by

Paroisky pubiished in 1953. You can see that these formulae are ex-
tensions of those in his report.

WALKINSHAW: There is in fact a paradox in some of hig formulas.

MILLS: Your specific question about the second t2rm can be answered
the following way: In Parofsky's work, only the part of the fields that

are traveling with the particie are included. This work includes all the
other harmonics in the gap also. About fwo yvears ago, Phil Morton began
his more complete treatment of the problem which many of you have seen.

WALKINSHAW: I think you will tind that Panofsky now would accept that
this formula is wrong. ‘
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MILLS: I am rot sure which one you mean.

WALKINSHAW: Well, I think that in calculating his transit time factor
he put in a term which was dependent on the velocity. This is probably
all right when you consider one gap, buf when you change this into a dif-
ferential equation, and consider the phase oscillations of the particle,
you find that the phase damping is different from that in a harmonic
traveling wave case. This is very curious because you are saying that
the harmornic terms are causing some kind of extra phase damping. We
wondered once if this was caused by some curious alternating gradient.
Then we carried out the gap approximations, and discovered that there
are indeed other second-order terms which cancel out the first one, and
you come back to the simple approximation.

MIL.LS: The primary motivation here is the investigation of coupling
between the axial and transverse motions. 7This is only intended to be

an expansion in the next leadirg ferms. There is another separate
question which I think is related to what you gaid and that was the foliow-
ing: How adiabatic is the motion? This is a guesiion which was invesgti-
gated separately by Young and reporied in 1961. Indeed the phase motion
is not adiabatic in the low energy pari of the linan,

WALKINSHAW: 1 thirk that the correct angwer is the one that yvou get
when vou take the harmonic component only. We are quite sure of this.
We spent a long time on this and corresponded with Panofsky. He agreed
that there was this curious =ffect, 1 is quiis vomphf ated, What Panofsky
was doing here was to integrate across ore gap, You have to change this
into the differential equation, If vou do this by mairix technigues keeping
in ail higher order terms, including velocity variation, you find the modifica-
tion to ail the terms will carcel exactly the term you have on the board.

The explanation that you are d to ook for is that the higher bhar-
monics, in some curious way, are causing some coherent effect on the
linac. 7This is what started us off; we couldn’t really see why this should
be so. I think you will find that if you do thig properly the harmonic iferm
will in fact give you as accurate an answer as you want.

9

MILLS: 1 believe this is done properly in Morion's thesis. I did check
to see the nature of the next order term and in fact whern one to 1S up all
the harmonics, just those pressnt in this ferm are there.

OHNUMA: What kind of y and R do you uge? ‘I'he ¥y and B are changing
continuously across the gap.

SWENSON: We neglect the change of velocity across the gap and use for
¥ and B some sort of mean value.
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OHNUMA: Another question. As I mentioned when I talked, this kind of
effect or this kind of calculation might be important when energy is, say,
below 50 MeV, But then I seriously doubt, aside from the academic ques-
tion, in a practical design what the real importance of this kind of calcula-
tion would be. This is a point which is not completely clear, because
there are all kinds of factors coming into the beam dynamics. Unless the
effect is very serious, 1 do not see the particular importance in an exact
point-by-point integration.

'GLUCKSTERN: With regard to the point that Bill Walkinshaw made, I
think there is another motivation for trying to include some velocity
dependence in the formula. I agree with you in what you say in that, if
_the particle is trapped, then the only thing that can matter is the wave
" component which is traveling with the velocity of the particle. But an
additional guantity of interest, if particles escape longitudinally, is the
- place where they strike the bore or the irises and cause radioaciivity.
To answer this question, I think one has to worry about the other wave
components, If a particle escapes from a fish, if it is near the border,
it will act as if it is stable for quite a way. And not until it gets far
enough away so that all the waves average to zero can you take it as not
having a change in energy.

WALKINSHAW: Well, I think if you truly analyze your performance, the
higher order harmonics are traveling ai such a vasgily different phase
velocity from the particle itself that the effect averages very quickly.

GLUCKSTERN: That is as long as the particle is traveling with the bunch.

WALKINSHAW: Oh, I see. You are saying you may trap them in some
of the others.

GLUCKSTERN: No, I was referring to the fundamental wave component
only, but for a particle traveling with almost the right velocity. When a
particleescapes from a bucket, until it gets to a posgition where it does not
oscillate very much, I think that the effects of the other waves will have

to be taken into account.

WALKINSHAW: (Continuation of earlier discussion.)} This paradox is a
very interesting and amusing one really, because when we saw that the
phase damping is different from the harmonic traveling wave case, we
started to look for a physical explanation, and you can find one. The
reason is this: if you look at the energy gained going across the gap, it
will depend on the time it takes across the gap, Now if the particle is
making phase oscillations, this means that if is taking different times
during its phase oscillation. Part of the time it is going faster across
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the gap, ir which case it gains more energy, and then when it spins
through half itz oscillation, it gains less and you feel that you have
some kind of integrated effect that could cause an increase in the rate
of damping. Now that appears to be an explanatior, but is the wrong
explanation.

SYMON: I do not understand how fwo different approximations can give
two different rates of damping because you can calculate the damping
independently of any approximation just {rom the fact that the area on an
erergy time plot is rigorously constar:t independent of any approximations.
That means that if the formula gives you a value which disagrees with
that, it must be incorrect,

WALKINSHAW: I agree. That is where we started. We got two different
rates of damping according to itwo approximations and then we fried to
find out which one is correct and we decided il was the harmonic traveling
wave approximation.

SYMON: But you can decide which one is correct by which one gives vou
the correct area in the end?

WALKINSHAW: Yes, quite so.

FEATHERSTONE: Regarding Dr. Ohnuma's question as to the value of
this sort of calculation, I am sorti of on the outside here, but looking at
the figures over there, for AE, the difference between the fiat and
actual case amounts to more than 10%, which for the person who has 1o
rur these things means more than 20% in rf power. 1 think this is quite
gignificarnt.

SWENSON: I believe Dr. Ohnuma questioned the sigrificance of the
velocity dependent term rather than the term which gives 10% effect
which you mentioned. That really resulis from a better calculation of
the transit time factor based on the actual fields in the gap.

=)
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