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I. Introduction 

A number of theoretical studies on beam 
dynamics in proton linacs have been developed 
for analyzing longitudinal-transverse coupling 
effects,1,2 space-charge effects,3-9 etc. It is, 
however, worthwhile to treat the various effects 
in terms of a unified theory which gives physical 
insight into the coupling mechanisms and the re­
lations between those effects independently 
discussed. 

For this purpose, as has been discussed in 
detail by Nielsen, Sessler and others for circular 
machines,lO,ll we shall start from the reduced 
Boltzmann equation, or the Vlasov equation, on the 
transport problems in a collisionless assembly of 
charged particles. Introducing the density dis­
tribution in the phase space as 0/, we write the 
Vlasov equation 

£1);0, 
0-;; 

(1) 

where the force K is assumed to be independent of 
the particle velocity and the motion of particles 
is treated nonrelativistically. 

The coordinates moving with the synchronous 
particle on the accelerator axis (z-axis) are 
chosen as the reference system. The relativistic 
correction can be made by using the longitudinal 
and transverse masses for the motion of-z-direc­
tion and x (or y)-direction, respectively. First, 
we shall discuss the stationary state, for which 
oo/Iot ; 0, and then proceed to the time-varying 
case by perturbation analysis. 

II. Stationary State Boundary Equations 

For a stationary state, we may assume the 
charge distribution in a rather simple form. 
Nielsen and Sessler lO assumed two-dimensional con­
stant distribution within the region bounded by a 
phase trajectory and zero outside, Kapchinsky­
Kronrod 3 and Morton,4 independently, applied 
Nielsen-Sessler's method to the analysis on the 
longitudinal space-charge effect in proton linacs. 
To discuss the longitudinal and transverse motions 
in a unified theory, we may aSSume constant distri­
bution in the six-dimensional phase space as 

tiJ;au(lv 1-lvBI) 
x x 

X u(lv I - IvBI) z z (2) 

where U is a step function which is unity for neg­
ative arguments and zero otherwise. a is a con­
stant and v~, v~ and v~ are boundary velocity 
parameters, each of which is, in general, the 

function of x, y, and z. At a spatial point 
(x,y,z), this gives constant distribution inside a 
rectangular box in the velocity space. The charge 
density in the usual space can be given by 

( 3) 

where vB,s are assumed to be symmetrical about 
Ivl ; O~'YE~uation (3) means that the spatial dis­
tribution will have a peak at the origin of the 
coordinates and decrease towards each direction. 
Inserting Eq. (2) into Eq. (1), we get 
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This equation is identically satisfied inside the 
boundary. In order to satisfy the Vlasov equation 
at any point on the boundary, it is required that 
each bracket term should be zero on the boundary, 
or 
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Using the relations as 
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we can rewrite the above equations as 

dv 
B 

K 
B x x 

0 (5-1) - v 
dx M x 

K dv 
B 

J B ---.::L 0 (5-2) - v 
M Y dy 

K dv 
B 

z B z 
0 (5-3) - v 

M z dz 

or in the integrated form as 

1. M(vB)2 I K dx const (6-1) 
2 x x 

1. M(vB)2 
2 y J KydY const (6-2) 

1. M(vB)2 
2 z - I Kzdz const (6-3) 

Equations (5) and (6) are the boundarfi equations 
in the stationary state. A set of (vx ' v~, v~) 
need not be the components of a single particle 
velocity, so that these are not the trivial equa­
tions of motion. It should be noted, however, 
that the boundary velocity in each direction sat­
isfies the equation of motion in that direction. 

For example, we shall consider the transverse 
motion. Usually, the gradients of Q-magnets are 
chosen to be approximately B' ~ l/vs ' so that the 
force in the smoothed approximation does not ex­
plicitly depend on t. The rf defocusing force at 
the synchronous phase angle, with neglection of 
the slow damping of the amplitude, can also be 
treated as a stationary force. Thus, including 
the space-charge effect, we get the stationary 
solution by writing Kx as 

K 
x 

dV 
x - e -

dX (7) 

where k~ is the smoothed force constant of beta­
tron oscillations and V the space-charge potential. 
Inserting Eq. (7) into (6-1), we get 

(8) 

For the case without space charge this gives the 
usual elliptic boundary. The space-charge poten­
tial can be written as 

V(x,y,z) = : I G(x,y,z I x/,y/,Z/) X 
o 

p(X/,y/,Z/) dx/dy/dz / , (9) 

by using the density function p(x,y,z) in Eq. (3) 
and the Green function, or the kernel, G(x,y,z I 
x/,y' ,Z/). In a recent work, Hirawaka12 has per­
formed a numerical computation of the space-charge 
potential in drift tubes for several typica~ 

ellipsoidal bunches. Analytically, the Green 
function in a cylindrical metallic tube of radius 
a is given by 

G (r , 9 , z I r 1 , 9 1 , Z ') = 2 ~a L 
m=O 

X S 
m 

1 r Am£ I z - Z 1 I 
cos m(9 -9) exp L- a ] ' (9 ') 

in the cylindrical coordinates. In this expres­
sion, Am£ is the £-th root of the m-th Bessel func­
tion Jm(u), and Sm = 1 for m = 0 and Sm = 2 for 
m ~ O. The self-consistent solutions will be ob­
tained by combining Eqs. (3), (9), and (9

/
) with 

the boundary equations. It should be noted here* 
that, if we disregard the space-charge potential, 
the boundary equation (8) yields a square cross­
sectional beam. In general, the beam shape is 
determined from the boundary equations (6) in­
cluding space charge, so that to obtain the self­
consistent solutions we need to find the consistent 
limits of the integral in Eq. (9). From an approx­
imate calculation, however, (xB)max of 0.6 ~ 0.7 cm 
is given for a 100 rnA beam with vs = 0.04c in the 
typical (SNSN) focusing system. Such a beam will 
also give a limit for the (SSNN) system. 

*The author wishes to thank Dr. Lloyd Smith, 
who read the first manuscript and made these valu­
able comments on the beam shape. 

III. Perturbation Treatment 
on Nonstationary State 

In the perturbation treatment, the density 
function in nonstationary state will be written as 

(10) 

where the suffix a denotes the stationary-state 
value. It is assumed that ~l « WO' and the force 
K is also written as 

K (; , t) = Ko (r) + Kl (~ , t) 

where IKII « IKO I . 

(11) 

Using the equation for the stationary state, 
and neglecting the higher-order terms, we get 

= 0 . 

(12) 

For convenience, we expand WI in terms of the 
Fourier series contained in a finite box of the 
phase space, and consider a component 

WI ~ exp j(~ . ~ + ~ . ~) 

The perturbing force Kl may be divided 
parts; the time-varying external force, 
the perturbed space-charge force, Kl s . 
given by 

(13) 

into two 
Kle, and 
Kl s is 
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dvxdvy~vz'~ Equations (13) and (15) 
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As a result, Eq. (12) becomes 

(~ . 

(14) 

(15) 

( 16) 

We shall take the Laplace transform of Eq. (16), 

(p + q) ~p- I\r 0 . e (~ 0~0 ) V 1 - J - )( 
M 0-;'; p 

1 ( ~ e O~O ) o , + K . 
M p 0-;'; 

(17) 

where 

(17 ') 

and .10 is the initial value of ~l. .p' Vp , and 
Kpe are the Laplace transforms of ~l' VI and Kle, 
respectively. The Laplace transform of Eq. (15) 
is 

I~ 12 V = ~ J. dT . 
P 8 0 P 

( 18) 

Eliminating Wp from Eqs. (17) and (18), we get 

J '~l 
0 

dT _1 (K e. J _1 (OW.9) dT ) 
__ 1_ p+g M P P+g ov 

V 
P 1 ~12 2 OW 

8 0 ){ 1 - j e (~.J _1 (~) dT ) 
8 MI~12 p+q 0-;'; 

o 
(19) 

In this expression, the terms due to ~10 and each 
component of Kpe can be calculated independently 
and be summed up afterwards. 

The integral both in the denominator and 
numerator in Eq. (19) is obtained as 

I = J __ 1 __ ( 01\1 0 ) dT = 
x p+ q oV

x 

(20) 

with 

] ' (20 ') 

where the stationary distribution in Eq. (2) is 
used. Similar results can be obtained for Iy and 

I z · 

If we neglect smaller oscillations within the 
phase boundaries, we may concentrate our interests 
into the long-wave components for which Ix. ;BI ~ 1 
and 11:1· -;;BI ~ 1. Then, the integral is approxi­
mated as 

I "" x 
(21) 

at the long-wave limit (Ipl » Iql). Using the 
expression of the proton plasma frequency, w 2 
e2 p/80M and neglecting WlO, we get p 

(22) 

It is noted thAt V has a pole at p = ± jwp' A 
100 mA beam bunche~ in the volume of 10 cm3 has 
the plasma frequency of about 4 ~c. 

Now we shall ask how the phase-space boundary 
will change with time. The boundary motion will 
be inves~igated by considering the motion of par­
ticles on the boundary. For the x-direction, 

dv
B 

(x,y,z,t) 
x 

dt 

~vB ~ B ~vB 
U x r2 U x 
'3t + ~ ox v x + ay v Y 

K 
x 

M 

At the stationary state, this reduces to Eq. 
In the perturbation treatment, we again let 

(23) 

(4) . 

B B B 
vx(x,y,z,t) = vxO(x,y,z) + vxl(x,y,z,t) (24) 

and IV~ll « IV~QI. 
for which Ivy!, IVzl 
order terms, we get 

We also consider the particles 
« IV~ol. Neglecting higher-

B B B 
ov 1 B ov 1 B oVxO ___ x_ + ___ x_ + 
ot vxO Ox vxl ~ o . (25) 

B 
Again, we take a Fourier component of vxl and the 
Laplace transform of Eq. (25), obtaining 
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(26) 

where Wx is the angular frequency of the unper­
turbed transverse oscillations and the relation 

B 
oV

xO 
ox = ± j Wx 

is used. The initial value of V!l is assumed to 
be zero. If vB has a pole higher than the first 
order, then th~Pperturbation builds up and beam 
will blow up during the acceleration. This will 
occur if the numerator of the right-hand side has 
a pole around Wx at the long wave limit. From 
Eq. (22), it is shown that in a high-intensity 
linac such a condition is particularly satisfied 
as wp approaches to wx ' 

Similar analysis can be made on the longitu­
dinal component, but coupling between the longi­
tudinal and the plasma oscillations will be much 
stabilized due to the relatively fast change in 
Wz during acceleration. 

IV. Coupling Between Longitudinal and 
Transverse Motions with Space Charge 

As an example, we shall consider the coupling 
between the longitudinal and transverse motions 
including space-charge effect. The term in Klx

e 

due to the coupling by rf field is written as 

eET iP cos CO 
s 

in a nonrelativistic and linear approximation. 

(27) 

iP = CO - COs is the phase of the longitudinal oscil­
lations measured from the synchronous phase angle, 
cos' In the first approximation, we may assume the 
time dependence of the parameters as 

v s 

x 

(constant acceleration) 

, et> -1 

and constant for others. If we neglect the space­
charge effect, then et ~ -3/4 is obtained from the 
adiabatic approximation. With space charge et be­
comes larger, although the damping may still 
remain. 8 In general, frequencies of betatron 
oscillations (wx ) and phase oscillations (wz ) will 
undergo slower changes with time. The Laplace 
transform of Kl x

e 
is given by 

K e 
px 

f(et+ 1) - Y(et+l, vaO) 

cos COs 

exp [p - j (± Wx 

x 

l Vo } ± w) - , 
Z -' a 

(28) 

where feu) and y(u,v) are the gamma, and the 
Legendre imperfect gamma functions, respectively. 
The summation is taken for all possible combina­
tions of ± Wx and ± Wz ; the suffix of xo corres­
ponds to the sign before r~ and the suffix of COO 
to the sign before wz . 

In these equations, we considered only the 
term proportional to iP. The nonlinear phase oscil­
lations, however, will add to Kl

i
e the terms oscil­

lating with the frequencies of Wx ± n wzl, where 
n is an integer and the case of n = 2 is parti­
cularly important. 

Inserting Kp: thus obtained into Eqs. (221 
and (26), we get coupling effects. Gluckstern 
and Ohnuma2 investigate in detail the coupling 
without space charge, which is given by the first 
term of the numerator on the right-hand side of 
Eq. (26). It is noted here that the so-called 
resonant effect, which would occur when the condi­
tion, Wz = Wx or 2Wx, are satisfied, will result 
in damped oscillations due to the parameter change 
during acceleration. 

On the other hand, if we consider the second 
term which gives the coupling through space charge, 
then the perturbation is strongly enhanced and 
built-up at ~ ~ wp' The resonant coupling will 
also cause bU1ld-up oscillations even when the 
phase oscillations are damped (et < 0). These are 
explained in that the longitudinal oscillations 
excite a sort of plasma oscillations, or a collec­
tive motion of the particle assembly, and couple 
to the transverse motion. 

V. Conclusion and Discussion 

Using the Vlasov equation, we have discussed 
the longitudinal and the transverse motions in 
proton linacs in a six-dimensional phase space. 
Although we made some simplified assumptions, a 
unified theory is derived for the physical analy­
sis on space-charge effects, longitudinal and 
transverse coupling effects, and other high inten­
sity effects. In particular, it is pointed out 
that the coupling between the longitudinal and the 
transverse motions will be considerably enhanced 
through the collective motion of the particle 
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assembly. The following points should be noted 
concerning the above-presented analysis. 

1) In the perturbation analysis on space-charge 
effects, we only discussed the long-wave limit of 
plasma oscillations. Actually, however, the shape 
and the charge distribution of bunches will show 
complicated local fluctuations leading to a number 
of higher modes of plasma oscillations with the 
characteristic values of ~ and~. Thus a number 
of possible poles will appear besides p = jwp in 
Eq. (22). In addition, it is shown that some of 
them may have a positive real part giving an ex­
ponential build-up; a part of them, however, will 
be cancelled out by the general effect of the 
Landau damping in plasma oscillations. 

2) There are some possible ways to stabilize the 
build-up oscillations. In general, frequencies 
of the phase and the betatron oscillations (wz and 
wx ' respectively) will change during acceleration. 
The plasma frequency, wp ' will also change corres­
ponding to the change of the bunch shape and the 
charge density. These effects will give the major 
stabilizing mechanism. Effects of acceleration 
will also result in some degree of reductions of 
the rf defocusing force and the space-charge de­
focusing force given by Eq. (7). 

3) We have specifically discussed the effects of 
longitudinal oscillations and space charge on the 
transverse motion. It should be pointed out, how­
ever, that any other effects on the transverse and 
longitudinal motions can be treated in the pertur­
bation method reported here. In particular, the 
coupling of the x and y motion due to an imperfect­
ness of the quadrupole focusing system may cause 
such a build-up perturbation as discussed above on 
the longitudinal and transverse coupling through 
space charge. Finally, the dynamic beam instabi­
lities due to the field imposed on the accelerator 
cavity by beam can also be included in the present 
theory as investigated by Sessler and others for 
circular machines. 
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