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1, Introduction Except for the factor b,, K coincides with the
electrostatic Green function in the duct., After
The space charge field in a beam duct is Fourier transforms we have
expanded in a power series of a parameter o¢ which 3 3
is proportional to the square root of wall resis- (712 332 )d)k Eo (2.5)
tivity., The leading term in the expansion is the
field in a duct of perfect conductor, The self- d}(zq): - fkh(xgh(\() Ph()(\()d)(d\{’ (2.6)
defocusing force of the space charge is modified (2 Eo
by the induced charge on the wall, Generally, and so on, where subscript h means the follow-
the induced charge gives a longitudinal focusing ing: oo
force, while it invariably is accompanied by
X
transverse defocusing forces (Earnshaw's theorem) ]C <ZH j j(( Uz) e
Beside these, the whole space charge is attracted
t d th 11 wh th h distributi h
owar e wall when the charge distribution has ](_(sz) f_f (13)6 olh 2.7
no symmetry around the axis, This contributes °
to the orbit distortion and the instability of
the orbit with respect to transverse displacements, For a circular cylinder of radius @&,
The second term in the expansion gives a
decelerating force for the charge, which makes k(rsz[ R®Z')
up for the energy dissipation in the duct wall, oo r R ]
” Y z-
together with transverse forces, which are respon- = X Jo ot @) J, (Aot %) ( L Z")
sible for resistive instabilities, 2ma S a0 J2(A.e)
@K
In the following, Section 2 to 4 deal with < ehilim QL)IM(AMQR)MW(Q O)@"P( (Au?lz-Zl)
the field of traveling charge in a cylindrical + ‘rta. ) f O l)
duct of perfect conductor. The expansion of the w18z Am Jmi i
field in the parameter o< and the effects of the | h i l(( ll)
wall resistivity are discussed in Section 5. kh(mf9®)=5g {ID(F“‘)KO(? ) Io(k I( )Io(
2, TField Equations g h! W ( la) lh\,, (W) bcoar(s-B)
Eield Baustions o 15 {1, - S (P (R e
The scalar potential ¢ of a space charge m=! (2.8)

field satisfies the wave equation
where Amf is the £-th zero of Bessel function

2
(A-—g,}-*e—?—,_)¢=——,—°-. (2.1) Jmu), and r, = r, r, =R or r, =R, r,=r
2t Eo according to r ¢ R or R <( r, Profiles of the
Assuming uniform structure of the wall and axially symmetric part of (2,8) are illustrated
uniform velocity - of the charge traveling down in Fig. 1. Numerical tables of various Green
the duct, we have 5% =_y5% and functions will be published elsewhere,
2 z
(2+ 2 L2 )4,:__'0
2x as b,z 2z2 Eo b
\ z _ 2 (2.2) 3, Potential
—X—z: I-—EQ)*OU' = 3—@ s
with the boundary condition for a perfect Using (2.3) potential ¢ is computed for
conducting wall, ¢ = o. three types of ellipsoidal charge, ¥ =1 is
The solution of the differential equation assumed in this section.
(2,2) is given in terms of Green function K
i. Uniform density over the region
c#(xgz)-—ka(xyz/XYZ)ﬁ(xyz)dxanz (2.3) 2 z2
,_A\—’; + 03 =1, (3.1)
with B
3 3t gy i, Statistical distribution. Uniform
(3zz+35; r ﬁ:) KO‘?Z/YYZ)=’X(7<>X)5\(‘1*Y)3(2'Z) density over a hyper-ellipsoid in
6~dimensional phase space
Yz z° P
(2.4) LA N ——+—-:1
Az g C’ D* E? (3.2)
K(zLjZ{X\{Z)—_—O) for (x,y) on the boundary, A/ =\/-:§ A ’ B/=\/_-% B
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ii, Gaussian distribution
22

= .z
P-{OCMP( Aﬁ? Bb?

A( = {%éf\) E3”=:J%EE3.

The total amount of the charge in each ellipsoid
is normalized to 10'? electron charge = 1,602 x
10? coulomb., The sizes A', A", B', B", are so
determined that the distributions i# and iii
have common second moments around the axis as the
distribution i . The results of computation are
presented in Fig, 2 (equipotentials) and Fig. 3
(potential on the axis)., In these figures the
potential of the same ellipsoid in free space is
shown together, The difference between the duct-
field and the free space~field is noticeable par-
ticularly in the axial direction,

)

’ (3.3

4, Fields and Forces

The vector potential /A satisfying

(2-Ep ) A =-MT

Pt X K. A== T (4.1)
is shown to be
A‘(:Ag:o> Az"‘&)‘o’m"'

Field £ and B derived from 4-potential (¢ ,A)
'?m‘i‘P“E%Aa B=rin,

give Lorentz force on a unit charge

jﬁZ: Elvajz ?‘19_7—((#
fy = Ey+vBy=-p ¢ (
4.,2)
3Lz = Eg 3}22?8.'2¢
f ¥ 2 ?YK& ¢-

Integration of the product F f gives the total
force [ on the charge system, Consider a well-
defined bunch of charge with a reference point,

say the center of gravity, at (xq, Vo, Zo).
Plryzt) = P(x-Xe, Y=yo,2-2,), 2z, =0t
The x component of the force [ is
- dydz
T= - {{‘o 4> d dy

|
7
—EL Bn(wjf’ (xy2) K(%ljzl XYZ) P(XYZ)
drdy dz aXaYdZ,

Consider Green function in free space

I
Gty %28 |

(4.3

F(mz))(\/z) 4-Tt{
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and a function G=¥K - F
of the induced charge.,

representing the field
The integral

jf P FP dxdyds dYdYdz

does not depend on the location (x,, V¥,, 2p) of
the bunch and does not contribute to the force F .
Therefore, with a potential

UOGY.zo)= EJJ-"IP&(’ dxdydz dXdYdz

\ * 4.4)
=4:_1[—E°72J."Jﬂ‘ ﬁ-kﬁ‘d‘ldy dxd\]/dk,
one can write
F=-gradU, (4.5)

Similarly the generalized force Fh for a coordi-
nate x;

{ of any particular mode of charge defor-
mation is derived from U,

=

—Z%U = 0 for a uniform duct,

-2 . (4.6)

Note FL =

The function U 1is given below for a charge
filament of effective length 2e and total charge

q:
9
(O(X("ZJC)=H I+(z_-gz_g)1 8(1-7(")8([,—%) (4.7)
Zo= vl
Yors.-- _rt
U= HM{{(u) 31w (2)5, usd
(4.8)
LTl g™ f )= 04353
40()/(.) = < i———'—p(t) e d 5 R .
T 4 ~2ut
I (o)= 10027,
R =% {Io(t)l.(t)e at, He)= oo
Functions f,(u) and f,(u) are shown in Table
I and Fig. 4. Note fs(u)—+log u/(2Ru) and f,(u)

~-» 1/Tu when u—>»e, For infinitely long fila-
ment with line density T, we have

Utr ___-26-(590\6%)

2?05

&-n?

per unit length,
atfo (4.9)
2

Using the force constant l(sP=FT~/n='(a—réU)/’$
we have the equation of transverse motion of the
charge

MYF —kepte T L(‘i““‘ o =0, (4.10)
where M 1is the total mass of the filament and
kiuw\ = 2fq f———B d2  represents the effect of
the quadruple magnetlc field. Stability of the
solution 1r4(t) sets the upper bound for QSP
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Consider, for example, the first tank of a
proton linac, with drift tube bore @ =1 cm, f =
200 Mc, [Z8yd2 = 15000 gauss alternating tube
by tube, The current limit thus imposed is
something around 3 ampere, when u = ¥/a = 1.

The first term of the series (4,8) represents
the effect of the electrostatic force at the en-
trance of the drift tube. The moving charge
obtains kinetic energy -U when entering the bore
and gives it back when leaving. With the typical
machine varameters above and I = 0.2 ampere, this
energy amounts to 0,7 keV per particle.

5. Resistive Forces

Using the time factor é¢wt and the complex

permeability €' = & +¢0/W  we write Maxwell
equations in a material of finite conductivity o
as following,

~tfwk
L)AL\JIH

rot H
vt £ =

1l

i
C

(o+¢E'pw)d
(a+ Epu®) A

"
)

: (5.1)

Fourier transform (2,7) in the coordinate =z

gives
B
(axl ayz 4”! e
(5.2)
(51‘ a‘j’ .z)/Ah=o,
where
e = mEpY
- f - ¢ SMY
= —Epvi-t "
hv = w,

We need 4-potential @y, , Ah) satisfying (2.5)
and (4,1) in the vacuum and (5,2) in the wall. ,
Consider power series of a parameter = E;X/@'X,

Ct’h: 4>:+<x ¢i+ azd>:\[+ -----

) T I
A= Apt X Ant XEART (5.3)
0 [
¢h,ﬂhlare the potentials obtained in the
preceedlng sections for a perfect wall duct.

¢,”4) -—-~ and /A;:,/A:f,---—

geneous equations

satisfy homo-

(av d*jl ) d’h =0
i 1 b

div Ap~iEophv =0,
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and so on, In the range of practical interest,
the following is a good approximation for h/¥’

and . We take the liberty of having Re (h/y")
>0 and /A:/«o_
\ !
h _ B2 lﬁ‘.‘.i .
i; = X 3? ( 7 ) (' ¢ v) N
% Vit \d for h 2 O.
= K(; ( )(_H\) (5.5)
2

X is the characteristic wave number of the wall
material,

]
IORY3
X= ('E:) (5.6)

with which the skin-depth &

- 38

ig related as

From the discussions in the preceeding
sections, we know ¢h 0, A, =0 at the bounda-
ry, and Ayk=Ayh =0 everywhere. The 4-po-
tential in the wall is approximated as following

(r-a)
By (r6) = br(a,6) € ¥
' ‘ h(r-a) (5.7)
Ay (ro)= Apla,p)e ¥ ]

¢ and JA are continuous across the wall surface,
while their normal derivatives satisfy particular

boundary conditions. Thus from H, = Hp', and
Hy = Hy we have
1
Ash
| o e
T
A = — + Pn (5.8)
Yho 27

on the boundary. Meanwhile Lorentz condition in

the wall gives é: 0, ensuring

¢, =0

(5.9)
on the wall surface. Let ¢h and ¢u be two
solutions of the first equation of (5,4), with

the boundary consitions

3 40 2t 0
q’u'—"Tr‘pn, SFq’k"aaras
respectively. Then the set of first order
potentials satisfying (5.4), (5.8), (5,9) are
shown to be
I _
&F = o
I -~y ¢s9 KA t
Axhﬂf a—zdﬁl*ay%) (5.10)

W

/Atjlh h’U (aj¢h ar¢h )

/Azlh_’:'—
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Lorentz force on a unit charge in the field of
the above potential is

1 e

£ = Exi - VBH= ~ 5z e

I I I 2

W= Byt UBu=- ’J;;‘Q*

L . 1) (5.11)
fzk = E;ﬁ =" LE; h

ves
The resistive force is obtained after
Fourier transform of (5,11), It is expressed in
terms of a potential ¥

3Yud \

res |

| aoo( zh (5,12)
¢ =3 ; _h_dhe dh,

where ¢h is given as a Dirichlet's integral

Y x9) :9(5. Ki(xylre) 2 ¢ (ro)ado

r=a

L [ HiGesl ) B0y )dxay

(5,13)

with
3
Hy, (xylxy) = ﬁ 3 Kn (xy] '9)5;?'(&\(“9’“) ad0 (5 14)
Yea

Using (2.8) we have

(B h
H. (Y@H?@)‘ e ua{gzmz

274 I%“a)

LT, (2R)
Ta (Ba)

(5.15)

and for h —» O

Ho(rsll?l-)) 2m ’ (

The resistive force acts for a
bunch of charge in several ways. To give the
general notion f;vs for the charge distribution
(4.7) in a circular cylinder is shown below.

;)“”"“(‘9 ) (s.16)

traveling

ves L3 9 |
- a2 . L X
§. "y PR
3 (4 r)y ¢’
X r(;(h-) — ) C z h{mh(z -2+ Rien W(Z-2) %dh
2 3 (3a) (5.17)
For r = 0, we have
£33
v, 3 3
£ %0, =~ ZLB T feuw)esmml
z (}a)7 ¢nc (5.18)
where u=¥l/g , w= ¥(z-2.)/a . The
functions C, S, and C + S are illustrated in
Fig. 5, The first terms in { of (5,18) repre-

sents a decelerating force for the charge, while
the second term gives a longitudinal focusing
force. According to Earnshaw's theorem, the
latter should always be accompanied by defocusing
forces in transverse direction, As the resistive
focusing and defocusing forces are usually much
smaller than the corresponding electrostatic
forces of previous sections, they need no further

team(o-{)
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consideration., The decelerating force shows up
as the result of Ohmic potential drop along the
duct due to the wall current. The net decelerat-
ing force Fgres is obtained after integrating

P fves. The moving charge performs work U B ¢
against this force, making up for the energy
dissipation in the wall, The net force Fzref
for the charge (4 7) is

«—ws__ 22 5262 z'z
‘-z (7(“)" 4“?&1 C(M) s U= Uf/ﬂ

2‘ (5.19)
Clu )‘ u C¢ = 0.3822
J{I(t)gze r=e

Function c¢(u) 1is shown in Table I and Fig. 4,
Note c(u) = 1/(4y2iu?) when u-»oe . Thus in a
stainless steel tube ( X = 4.2 x 108/meter) of
radius a=1cm, 10'? protons forming a bunch
of length 20 =2 cm receive decelerating field
of 0.10 kV/meter when 7§ —» oo .

For a generalized coordinate % of charge
deformation, the resistive force on the charge
system is conveniently derived from a pseud-
potential V.

res. _ 2
Fi - BZL\/
Hi { dxdyaxdYdh
V = zurex{ J ﬁb b dxdy
(5.,20)
Using (5,5) we have
2
@2 | f / LF!
dwdyaxdy dh,
23 awg, W2 fi|7 &H‘fh Ay
(5,21)
Apparently the function V does not exist for

a uniform beam with h = O component only.
Nevertheless the part of V attributed to a
perturbation of any wave number can be obtained
with this formula, Should the imaginary part of
the resistive force can supply enough energy to
a particlular mode of oscillation with this wave
number, the oscillation builds up with time
resulting in an instability of the beam.””
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Table I, Functions fg(u), fa(u) and c(u).

u fO(u) 5w c(u)
0,0 0.4353 1,0027 00,3822
0.1 0,3989 00,8225 00,3019
0.2 0.3686 00,6909 00,2440
0.3 00,3430 0.5917 0.2012
0.4 0.3211 00,5249 00,1687
0,6 00,2856 0.4051 00,1235 _
0.8 0.2579 0.3314 0.9449 x 10
1.0 0.2356 00,2790 00,7479
2.0 0.1677 00,1527 0.3199
3.0 00,1325 00,1040 - 00,1831
4.0 0.1106  _, | 0.7868x 10 | 0.1213 _
6,0 00,8439 x 10 0.5278 0,6700x 10
8,0 00,6899 0.3967 0,4376
10 0.5873 00,3177 0,3139
20 0,.3487 0,1591 0.1114 _
30 0.2540 0,1061 _ 00,6067 x 10
40 0.2019 00,7957 x 10 0.3941
60 0.1454 0,.5305 00,2146
80 0,1148 0.3979 0,13%4
-2 -4
100 0.9535x%x 10 0.3183 0,9973x 10

R=04 R=06

(b) (¢)

Fig, 1 (a) - (c),
Axially symmetric part of Green function K (\'92-' E@Z).
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30kV 1OkV —1.0kV
20kV
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(a) — (b)
-1 em ——~] \
20kV—1~
1.OkV
Fig, 2 (a) -~ (c).

F
(C) REE buct Equipotentials of uniform charge ellipsoid with semi-axis

\—‘ A, B, in cylindrical duct (right half) and in free space

(left half), Total charge = 10'%e = 1,602 x 1072 coulomb.
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Axial Distance z,cm Radial Distance r,cm
' 20 ' 10 ‘ ' 10
uniform-—__|

|__—uniform

110
| —statistical
Y/Gaussmn
120} \\\
\\
A\
\ N\
N\ \\
B=04-30[ A=06' N\
dg0l wall
Potential ¢, kV
V4 r
| 20 ‘ 10 10
uniform —_| | —uniform
statistical —/ / 110 statistical
Gaussian // \-Gaussian
120}
_3.0,

(b) Jsol

Fig, 3 (a) - (e)

Electrostatic potential on z~axis and r-axis of three
types of ellipsoidal charge distribution, (i) uniform, (i)
statistical, and (ii) Gaussian. Total charge = 10.'° e =
1,602 x 107 coulomb. Potentials in cylindrical duct
(solid lines) are compared with potentials in free space
(dotted lines).
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407

40

Istatistical \

Gaussian

r




Proceedings of the 1968 Proton Linear Accelerator Conference, Upton, New York, USA
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1l I 1 i | I I (N U
Ol 1.0 10 100

Fig. 4. Functions f,(u), £, (u) and c(u).

05
04 C+S
u=
C (u,w)
S(u,w)
-5 -4 -3 -2
0 I N—/0
2 3 4 5 w
1-02
(o) {-03
u=0
05 02
04 05
1.0
03 20
50

Clu.w)+Slu.w) /

\/ 0O 1 2 3 4 5w
-3 -4 1-0l

(b)

Fig, 5. Functions C(u,w), S(u,w) and C(u,w) + S(u,w).
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