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Summary 

Difference equations describing the motion 
of a proton through an accelerating gap have 
been given by P. Lapostolle at the Frascati 
Conference (1965) and by the author (Washington 
Conference, 1967). The dynamical coefficients 
contained in them are discussed here. There 
are two types, called T- and S-coefficients. 
T-coefficients belong to motion across the 
whole gap and have a simple form (transit time 
factor times a modified Bessel function). 
Difference equations through the first half of 
the gap needed to determine the mid-gap values 
of the particle coordinates, involve in 
addi·tion S-coefficients. Exact expressions 
(series expansions) for the latter are given 
here assuming that the Fourier coefficients of 
E (r~a), the longitudinal field along the gap 
ctrcumference, are known. Approximations for 
the S-coefficients are discussed. Corrected 
Tables of non-relativistic and relativistic 
difference equations are given. 

1. Introduction 

At the Frascati Conference P. Lapostolle
l

) 
gave a set of difference equations which co2)ect 
and extend the so-called Panofsky equations 
describing the phase change and energy gain 
along a linear accelerator. In this new version 
transverse motion too was taken into account. 
A new and improved derivation (including ) 
relativistic effects) was given by the author3 
The difference equations for the change of 
kinetic energy, phase, radial slope and position 
across the whole gap involve only T-coefficients 
which essentially consist of the transit time 
factor times a Bessel function. However, these 
still depend upon the unknown mid-gap values of 
the particle coordinates. For the determination 
of the latter difference equations for the first 
half of the gap must be used. These contain 
besides the T-coefficients S-coefficients which 
are of a more intricate nature. The expressions 
for all these coefficients are given here and 
approximations for them are discussed. The 

method how to derive th~s)d~fference equation 
is described elsewhere3)4 5). Only corrected 
versions of the difference equations are 
listed in Tables III to VI. 

2. Field Representations 

The field in 3 accelerating bap is 
supposed to be an r Aially symmetrical time
harmonic TM-field ,angular frequency W ) whose 
component E is symmetrical about z ~ 0, the 
centre of tfie gap. 

E (z,r,~)~E (z,r)cos(~+~) z,r z,r 0 

E (z,r)~E (-z,r) z, z E (z,r)=-E (-z,r) r r 

~ ~wt is time-angle (~phase). Field com
ponents are expressed by Fourier-integrals: 

E (z,r) z 

with 

y ik 
r 

(1) 
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a is the inner radius of the drift tube. The 
amplitude function b(k) can be related to 
field E (z,a) applied along the gap (r ~ a, 
I z I < ph): 

E (z,a) z 

_00 

E1.s~o>Bs cos (2nsz/p) 

(B ~ 1 ,B ~ B ) by a Green's function for 
a ~ave guid~. p-~ g + 2R. where g is the gap 
length (~ minimum distanc~ between drift tubes) 
and R. is the radius of curvature of the inner 
driftltube rim. The instantaneous peak 
"voltage" (at cp ~ -cpo) along the line r ~ const. 
is: 

00 

VCr) E (z,r) dz ~ V J (k r) zoo 0 

(b(O) ~ p). V(a) ~ E! p, V ~ V(O) ~ E1 p/J (k a). 
E1 is the average field s~rength across tRe 0 

gap, V is the voltage along the axis (of one 
cell).o Evaluation of the integral repre
sentations (2) with the amplitude function (4) 
gives series expansions of the field. These 
still contain the unknown Fourier coefficients 
E1 ' B. A finite number of them may be 
extrac¥ed from cavity fields calcula~~d by 
numerical methods (mesh calculations J) which 
usually give numerical values for U~-rH~(z,r). 
The series for U ~ - rH(z,r) (Table I) lS used 
for r ~ a to set up a system of n equations of 
n Fourier-coefficients (n is the number of mesh 
points within the gap where values of U are 
given) • 

3. Beam Dynamics Coefficients 

Beam dynamics coefficients are Fourier 
transforms (in z) of the field components. 
There are two types of them, T- and S
coefficients. T-coefficients are integrals 
over across the whole interval (_00 ~ z ~oo). 
They appear in difference equations where the 
particle crosses the whole gap cell (or gap). 
Their expressions are simple. The S-coefficients 
are defined as integrals over 0 < z <00 and are 
needed in difference equations alonG-half of 
the cell. Their expressions are complicated. 

The longitudinal, transverse and magnetic 
T-coefficient are defined as: 

00 

VoT (k,r) - JEz(z,r) cos(kz) dz 

-00 V T (k) I (k r) 
o 0 0 r 

00 

V oTr(k,r) == ~[Er(Z' r) sin(kz) dz 

V T (k) k T. (k r)/k o 0 .., r r 

V oTm(k, r) J c 
== k f.lHg ( Z, r) cos ( kz ) dz 

0 

V T (k) Ii (k r)/k o 0 r r 

with 

k ~ (k2 _ k 2 )1/2 
r 0 

They are known as soon as the transit time 
factor: 

(6) 

(7) 

E (z,o) cos(kz) dz ~ 
z (8) 

(b(k)/b(O)) x J (k a)/I (k a) o 0 0 r 

is given and are nothing more than convenient 
abbreviations. T (k) is a measure of the 
distribution of EO in the longitudinal 
direction. T (k)~ its derivatives T'(k), 
T"(k) (and thg above T-coefficients)oare 
ngeded for the single value k ~ w / z (z ~ 
longitudinal velocity of the partic~e a~ the 
gap centre). They may be easily obtained 
from fields given numerically by numerical 
integration of the integral defined in (8) 
(and from the formulae (6)). If the cell is 
regarded as a closed cavity, the limits of 
integration ~ 00 in (6), (8) and (9) must be 
replaced by + 1/2 (1 is cell length) and k by 
2n/1. This hardly changes the numerical 
values of these quantities. This method may 
be more convenient than to express T (k) by 
the Fourier coefficients B introducgd in 
Chapter 2: n 

To(k) T (k) (1 
00 

+ y) 

J (k a) 
sin 91)2) Too(k) 

o 0 
(8a) I (k a) o r (kp 2 

00 2(-1)~ (kp)2 
Y 2: n 

n=1 2 2 
(2nn) - (kp) 

The longitudinal, transverse and magnetic 
S-coefficient are defined as: 
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V oSl (k,r) 2 J Ez(z,r) sin(kz) dz 

",0 

VoSr(k,r) 2 r Er(z,r) cos(kr) dz (9) 
J 
0 

J VoSm(k,r) 
2c 

~Hg(z,r) sin(kz) dz k 
0 0 

Sl and S (as well as T] and T ) are dimension
less while S (and T ) nave th~ dimension of a 
length. Thi~ may beminconvenient in numerics: 
T l , T , Sl' S are somewhat smaller than 
unity~ S andrT are smaller than these by a 
factor 15 to 10~. Defining kT and kS in 
place of the expressions givenmin (6) ~nd (8) 
brings disadvantages for the writing of 
difference equations. For numerical work it 
is suggested to normalize T and S by multi
plying them by 2n/1 and to modify aynamical 
formulae in Tables V and VI accordingly. 2(In 
all these formulae S (or dS /dk, d2S /dk ) 
is preceded by k, somthe norillalizatio~ can be 
done in the following manner 
kS ~ (k1/2n)x(2nS /1)~(kL/2n)xS , 
k172n ~ 1). m m norm 

The S-coefficients are related to each 
other by the following equations: 

2W~HG(O,r)/k -

V k
2 

S (k,r)/k 
orr 

2 E (O,r) -
z ( 10) 

These probably will not be exactly valid, if 
the limits of integration in (8) are + 1/2, 
but may represent ~ good approximatio;. They 
could be useful for the calculation of radial 
derivatives of S-coefficients since they 
permit to circumvent the need of radial 
derivatives of the field components. With the 
help of series (4) for b(k ), series expansions 
of the S-coefficients may te found. They are 
listed in Table II. Unfortunately they are 
complicated. Sl and S are more important 
than S which only app~ars in relativistic 
formul~ where the need for the half gap 
difference equations is less severe. 

Fourier coefficients B and thereafter 
S (k,r), Sl(k,r) (with k ~!fu /z ), 0 < r < a, 

r 0 --
have been calculated from the potentials 
U ~ - rHG of various Alvarez cavities 
(0.6 - 8 MeV). There emerge the following 
results: 

a) Sl may be approximated by the first two 
terms and by the first (eventually second) term 
of the simple series in n. The contribution of 
the double series is negligible. The first 
term is small at low energy, appreciable at 
higher energies. This can be explained as 
follows: kg/2 ~ n/2. In low energy cavities 
kp/2 ~ k(g/2 + R.) comes near to n and the 
cotangent is sm~ll, while at higher energies 
R. is small compared with g and kp/2 is nearer 
t6 n/2 and the cotangent is larger. The term 
proportional to J (k r) is the most important 
one, it is alwaysOgr~ater than Sl(k,r); it is 
almost constant with r. The terms with n ~ 1 
(2) contribute 30% (t%) at .6 MeV, 10% (2%) at 
8 MeV at r ~ a, for smaller r the situation is 
better) Therefore at low energy the formula 
for S1 derived for homogeneous field 
E (z ,a) ~ ~ ( I z I < p/2) appears not a very 
g80d approximation.- Sl decreases slightly 
with increasing energy. 

b) S may be approximated by the singl," term 
and by the first two (eve'1 tually three) terms 
of the series in n while the double series can 
be neglected. The absolute value of the term 
with n ~ 1 (2, the rest of the sum) contribute 
1l0%, (10%, 2%) of S at 0.6 MeV, 50% (25%, 
37%) of S at 8 MeV.

r 
At higher energy terms 

with greater n become important, but the error 
introduced by their neglection is less harmful 
since in the difference equations the S are 
mul tiplied by eV /2W and the kinetic enli rgy W 
. 0 
lncreases. 

Derivatives of S-coefficients are under 
investigation and results will be given in 
ref. 5). 

4· Difference Eguations 

Tables III to VI contain difference 
equations for particle dynamics in an 
accelerating gap. They have been slightly 
correct3, in comparison with those published 
earlier • Increments as needed in the thin 
lens approximation are listed, e.g. 
ll~ ~ ll(cp - z dcp/dz), ll(r - z dr/dz)~ llT. For 
example, the trajectory of the entering non
relativistic (relativistic) particle is 
extended for free motion up to the centre; 
there is the thin lers, the coordinates are 
incremented by /','11, ll~, llr', llr of Table III 
(Table IV) and then sets in free motion with 
these new values. The diffc·rence equat ions 
of these Tables (III and IV) contain tLe still 
unknown mid-gap .values VI, 1)', r', r. The 
difference equations of Table 9 anR VI fOT the 
motion through the first half of the gap may 
be used to detern:ine them. As 8 matte}: of 
experience, the corrections involving 
S-coefficients become less and less important 
with increasing particle energy. 
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All these difference e~uations have been 
found by first orde3)~vrturbation theory as 
described elsewhere )5). The action of the 
gap field on the otherwise freely moving 
particle is treated as a perturbation. 
Solutions of the e~uations of motion are 
expanded into pOWerfl of at ~ eV1 /(mwpz ) 
(~ impact of the field during one perioajfree 
particle momentum) and terms linear in c:e lead 
to the difference e~uations. In the non
relativistic e~uation only the electrical 
field has been retained. In the relativistic 
treatment are considered the magnetic field 
and the mass variation too. The integral 
representations (2) of the field are inserted 
into the first order e~uations and z and r i~ 

e~ (z,r,~)(e~ual the zero order solution ~(o) 
~/i and r 0, ~ r ~/w + r. The equations of 
motion can then bg solved £y ~uadratures. 
Afterwards the integrals in k are evaluated 
by Cauchy's residue theorem. zFor integrals 
across the whole gap there are only dynamical 
poles at k ~ + k (poles at J (ay) ~ 0 
correspondtng to the evanesceRt wave guide 
modes can be neglected) rendering the terms in 
Tables III and IV. They cut out from the 
continuous spectrum of waves in (2) the partial 
waves whose phase velocity e~uals the particle 
velocity. For the half gap difference 
e~uations the trajectory ends at the gap centre. 
In the k -plane appear additional poles at 
k ~ + 2*n/p, n ~ 0,1,2, •• They describe 
s~anding waves as they exist within the gap 
and yield the simple series in n contained in 
the S-coefficients. 
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Table I - Series Expansion of the Gap Field 

I z I ..s p/2 : U(z,r) = - r H (z,r) = 2 E EOO r p x 
" 1 

Sl (k,r) 

S (k,r) 
r 

- S (k,r) 
p m 

E (z,r) = (E:Wr)-1 aU(z,r)/ar 
z E (z,r) = - (wr)-1 aU(z,r)/az 

r 

Table II - Expressions for T- and S-coefficients 

T (k,r) = T (k) I
1

(k r)/k 
m 0 r r 

T (k,r) = T (k) k I 1(k r)/k 
r 0 r r 

J o(kor) 00 pk B I (fl rip) 
- ctg(kp/2) T I (k r) + - 4 J (k a) 2: n o n 

pk/2 2 2 I ( fl a/ p) 0 o r o 0 
(2nn) - (kp) n=1 o n 

(kp) (~2 
00 B (-1 ) n 00 Jo(jvr / a ) exp(-nvp/2) jv 

- 8 Jo(koa) 2: n 2: 
1 + 0 Jj (jv) 2 2 2 

n=, no v =, (kp) + (Tlvp ) (2nn) + (Tlvp ) 

00 

ctg(kp/2) T (k) k .T. (k r)/k + 4 J (k a) 2: o I r roo 

00 

2: 
V=, 

J1 (~r/a) 

J1 (~ ) 

exp( - Tlvp/ 2) 

2 2 
(kp) + (rv p ) 

2 
( TllJP) 

2 

2 
J (k r) 

o 0 +- 4 J (k a)kp 
Z Bn 1 Ii (flnr / p ) 

(2nn)2_(kp)2 fln Io(flna / p ) 

00 B (-1) n 
- 8 J (k a) kp.E 2: _:.o.-n __ 

o 0 a 1+0 
n=, no 

kp kop o 0 
n=1 

exp(-Tlvp/2) 

(kp)2+ (Tv p)2 (2nn)2+ (TllJ P )2 
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Table III - Nonrelativistic change of longitudinal kinetic energy, reduced phase, radial slope 

and reduced radial position across a gap 

6W 

6q, 

6r' 

6r 

6W 
r 

eV T I cos<p + eV d/dk(T k 11 ) r sin<p 
0 0 0 0 o r 

ak d/dk(T I ) sin<p ak d
2
/dk

2
(T k 11 ) r' cos<p o 0 o r 

- a (T k I /k ) sin<p + a [d/dk(Tok 11') T I J r cos<p o 1 r o 0 

- a d/dk(T k 1/k ) cos<p - a [ d
2
/dk

2
(Tok ~') d/ dk(T I ~ r sin<p o r o 0 

Table IV - Change of the Same ~uantit~es in the Relativistic Case 

(TkI
1
/k) o r 

r'sin<p J
;K 

+ 

2/2 2/2 ! 6r (1 - k k) - a(k k) (T 11 -k ) cos<p o 0 0 r 

* Adding the term in the square brackets gives the gain in total kinetic energy. 

Table V - Change of Kinetic Energrz Reduced Phase z Radial SloEe and Reduced Radial Position 

the First Half of the GaE 

6w 6W/2 + (eV /2) [ Sl sin<p d/ dk as/ar r ' cos<p J 
1 0 

6~1 6q,/2 ( ak/2) [ dS/dk cos<p + d 
2
/ dk

2 
as/ar r ' sin<p J 

6r; 6r'/2 (a/2) [ S cos<p + (d/dk oSjo r + Sl) r ' sin<p J r 

1',1'1 1',1'/2 + (a/2) [ dsjdk sin<p (d
2
/dk

2 
asj<3 r + dS/ dk) r ' cos<p J 

r'cos<p 

r'cos<p 

along 
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Table VI - Change of the Same Quantities in the Relativistic Case 

!1W /2 
r + 

!1r'/2 -
r 

(1 _ ~ 2 ) .., /2 E. [( S 
o 2 r 

'( dS 
!1rj2 + (1_~;)1/2 ~l dk

r 

k
2 

a 
cos~ + ar 

cos~ J 

d 2S '\ k
2 

( dS dS) 1 1,. 0 r m". 
dk2 r sln~) - k 2 d'k"" + k dk r sin~ J 

(
T I r- dS dS ] 

ak r' _0_ L r k m 
2 k cos~ - dk + dk r 

r 

+...2 k 
k

2 Sm) cos~ + 
( a r- dS k

2 
dS ] 

arL dk
r 

+ k~ k dk
m 

+ Sl) r , sin~ J 

k 2 dS
m

, 
( a 1- d 2S k

2 
d

2
SmJ dS l ) 

, cos~J 0 
sin~ 

r 0 +- k d'k"" ) - arL +- k --2- + dk r 
k

2 
dk2 k

2 
dk 

~ Adding the term in the square bracket gives the gain in total kinetic energy. 

Common to Tables III to VI 

a eV / (2W) 
o 

~2 
o 

W m/2 (dz/dt)2 
o 

(m/2) z2 
o 

m rest mass ~2 
o 

The argument k ~ w /zo of To(k), krro of the modified Bessel functions I (k r) n r and k,r
o 

of Sl(k,ro)' S (k,r ), S (k,r ) rom 0 
and the subscript of and r' ~ (dr/ dz) o 0 

have 
o 

been dropped. In all the expressions of Tables III to VI all these parameters refer to mid-gap 

values. 
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