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Calculators of space-charge ef­
fects in the early stages of proton linacs 
h~ve usually made some arbitrary assump­
tlon about the distribution of charge den­
s~ty in the bunch. It ought to be pos­
slble to make an estimate of the charge 
density by following the motion of the 
protons from the injector through the 
buncher to the accelerator entrance. 
This talk is concerned with two different 
attempts to perform such a calculation. 

. One of us has made a preliminary 
deslgn for a buncher for our ING project 
by a method often used in studying kly­
strons and accelerators. The system under 
consideration is sketched in Figure 1. 
Before they cross the first gap the pro­
tons are assumed to be uniformly distribu­
ted within a cylinder of radius 0.5 cm. A 
bunch, really a proto-bunch, is defined as 
the part of the beam which would pass a 
fixed point in one rf period. In the cal­
culations the motions of three consecutive 
bunches are followed, one guarding bunch 
on each side of the bunch under study. 
Each bunch is divided into a finite number 
- 20 to 40 - of equal pill-boxes. Each 
pill-box is then assumed to move as a 
rigid body, but pill-boxes are allowed to 
pass through each other. When the force 
on a particular pill-box is being calcula­
ted its charge is assumed to be concentra­
ted at its centre; the charges in all the 
other pill-boxes are left distributed. 
The equations of motion of the pill-boxes 
are integrated simultaneously by a.simple 
numerical method. Although some allowance 
can be made for the transverse motion of 
the protons, such effects are not included 
in the calculations presented here; the 
motion is assumed to be strictly one­
dimensional. 

We present the results of the 
calcu~ation in ~he form of a graph showing 
the flnal energles and positions (with re­
spect to the bunch centre) of particles 
which were initially at the centres of the 
p~ll-boxes. For the sake of comparison 
Flgure 2 shows results with no space 
charge forces. The isolated crosses in 
Figure 3 give the results with space­
charge forces calculated by the method of 
pill-boxes. It is apparent that the space 
-charge forces have a large effect on the 
action of the buncher. 

The pill-box method is a model 
which replaces something like 10 9 parti­
cles by 20 to 40 quasi-particles. Can 
such a model give meaningful results? 

One way to find out is to make comparisons 
with a model which goes to the Opposlte 
extreme - an infinity of particles. Let 
us send the particle charge, e, and its 
mass, m, to zero keeping the ratio elm and 
the charge density fixed. The one-dimen­
sional equation of motion for a test par­
ticle is then 

d
2

Z e f --:-:-z- = m p(Z' ,t)K(Z,Z')dZ'; 
dt 

(1) 

Z is particle position measured along the 
accelerator axis and p (Z' ,t) is the linear 
charge density at position Z' at time t. 
The form of the kernel K(Z,Z') appropriate 
to a one-dimensional beam in empty space 
is 

K(Z,Z')= (Z-Z') [ 1 1] (2) 
2Eo Iz-z'l - /(Z-Z')2+a 2 

M~S units are used and EO is the permitti­
Vlty of empty space; a is the radius of 
the beam. The function K(Z,Z') jumps dis­
continuously when Z passes through Z', but 
remains finite. 

In integrating (1) we need to know 
the initial conditions. Let s be the ini­
t~al value of Z for a particular test par­
tlcle. The values of s lie in a finite 
interval, a ~ s ~ b, corresponding to the 
set of three bunches under consideration. 
We shall assume that all test particles 
have the same initial velocity, v; this 
assumption is expected to be a very good 
approximation. It is convenient to consi­
der the Z defined by (1) and the initial 
conditions just specified as a function of 
sand t, say Z = f(s,t). Then, because 
p(Z' ,t) can be expressed in terms of 
f(s,t), (1) may be seen to be an integro­
differential equation for the function 
f(s,t) . 

Next we come to the important 
question of how p(Z,t) is to be calculate~ 
We shall assume that f(s,t) is a continu­
ous function of s for fixed t. The amount 
of charge between ZI and ZI+6Z at time t 
is (see Fig. 4a) the same as the amount of 
charge which lay initially between Z = s 
and Z = s+6 s . If the initial charge den­
sity was uniform and equal to Po, then 

(3) 
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for 6Z + O. When the function f(s,t) is 
not monotonic in s we can have a situation 
such as that illustrated in Fig. 4b; then 

(4) 

The number of terms in the sum is one 
greater than the number of extrema. It 
should be noted that the presence of ex­
trema in the curve of f(s,t) versus s cor­
responds to an overlapping of particles in 
the bunch; some particles have overtaken 
since other particles which were initially 
ahead of them. 

Note that when dZ/d s is zero the 
charge density is infinite. The positions 
of the singularities when f(s,t) has two 
extrema are sketched in Fig. 5. The sin­
gularities are inte~rable, usually of the 
form p ~ C[IZi-zll-~. 

The integration of (1) has now 
become a problem of considerable complex­
ity. In addition to the discontinuities 
in K(Z,Z') we must also deal with possible 
singularities in p(Z' ,t). However, there 
is an easy way to eliminate the second 
difficulty from the evaluation of the 
force in (1). Transform the variable of 
integration from Z' to s' by Z' = f(s',t). 
Each value of Z' can correspond to more 
than one value of s', but the different 
terms in (4) are exactly what is required 
to give 

(5) 

The form of the integrand in (5) is illus­
trated in Fig. 6 for the f(s,t) of Fig. 4b 
with Zj < Z < Z2. At a finite number of 
points the integrand jumps discontinuously 
as if it were suddenly multiplied by -1. 
All the extremities in Fig. 6 are at the 
same distance from the axis; the sharpness 
of the peak or valley near an extremity 
depends on the local value of df/d s . 

The transformation leading to (5) 
may easily be generalized to the three­
dimensional problem. All that is required 
is that there be a unique velocity for 
each point of the beam at t = O. It is 
convenient, though not necessary, to as­
sume that the initial velocities are all 
equal and that the initial charge density 
is uniform. 

A program has been devised for 
evaluating the right side in (5). Several 
integration methods are used, and the 
values of s at which the integrand is to 
be evaluated are chosen as required for 

each value of t. It is assumed that 
f(s,t) for fixed t is a continuous func­
tion of s with continuous first and second 
derivatives. The only interpolation re­
quired is for values of the relatively 
smooth function f(s,t), which is assumed 
to be given at fixed equally spaced values 
of S. This is much superior to any method 
which requires one to interpolate for the 
integrand directly. The table of values 
of f(s,t) is obtained by applying Runge­
Kutta integration to (5) for a finite num­
ber of fixed values of s. 

The joined points in Fig. 3 repre­
sent the results for the buncher of Fig. I 
calculated by the method of Eq. (5). Com­
putations with double the number of points 
in the table giving f(s,t) or with double 
the time-step in the integration of the 
differential equations give almost identi­
cal results. The agreement between the 
results for the two different methods of 
calculation shown in Fig. 3 is sufficient 
to suggest that either is adequate for 
buncher design. Decreasing the time-step 
by a factor 4 in calculations by the pill­
box method for similar bunchers changed 
the result by only a small amount. 

Before drawing two optimistic a 
conclusion from the agreement shown in 
Fig. 3 one should note that no singulari­
ties in the charge density have developed 
by the time the bunch reaches the acceler­
ator. In the curves of energy versus 
position the singularities correspond to 
points where the tangent is vertical. 
Singularities will certainly develop as 
the bunch proceeds through the accelerator. 
To provide a better comparison between the 
two models we have also done calculations 
for a buncher which, when studied by the 
pill-box method, did exhibit overlapping. 
Calculations by both methods are shown in 
Figs. 7 and 8 for 20 and 40 test/quasi 
particles per bunch respectively. The two 
calculations by the continuous-fluid model 
agree very well with each other; the two 
by the pill-box method do not. Neither 
pill-box calculation agrees with the con­
tinuous-fluid calculations. Both pill-box 
calculations have much more structure near 
the bunch centre than do the continuous­
fluid calculations. 

At higher beam currents the con­
tinuous-fluid method, as now used, also 
becomes unstable. The calculation of the 
space-charge force still appears to be 
satisfactory. The trouble is apparently 
in the integration of the equations of 
motion. These equations are effectively 
differential equations of the form 

F(Z,t). (6) 
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When p(Z' ,t) is singular the electric 
field strength, and hence F(Z,t), has a 
singular first partial derivative with re­
spect to Z. This property invalidates the 
Runge-Kutta method of integration which 
has been used. An attempt is being made 
to devise a better method of integration 
one that varies the time-step from parti~ 
cle to particle depending on proximity to 
a singularity. 

DISCUSSION 

(G. E. Lee-Whiting) 

WARNER, CERN: What was the size of the time-step 
used in the numerical integration of the equations 
of motion for the pill-box model? Did it corres­
pond to a step of size 8A in distance? 

LEE-WHITING, AECL: The normal time-step was 4 
nanoseconds. 

WARNER. CERN: Yes, that certainly corresponds to 
a distance-step of about SA. 

LEE-WHITING, AECL: But some runs were done with 
a step of I nanosecond. 

WARNER, CERN: Do you think that the fine structure 
in the Z-energy plane could be caused by too large 
a step in time? 

LEE-WHITING, AECL: The structure depends upon the 
size of the time-step, but I do not believe that 
it will disappear as the step goes to zero. The 
results converge slowly as the time-step is de­
creased. Calculations performed with decreasing 
time-steps do not indicate that the pill-box re­
sults approach the continuous-fluid results. I 
expect that this would happen only for a much 
larger number of particles. I can not make my an­
swer as direct as I would like to, because the 
tests with different time-steps were carried out 
for a slightly different buncher. 
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Fig. I 

Fig. 2 
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Sketch of the lay-out of a buncher proposed for 
the ING proj ect. 
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Plot of energy versus distance from the bunch 
centre at the instant the bunch centre enters the 
accelerator. Here space-charge forces are ignored. 
Before entering the buncher the particles were 
evenly spaced in Z and all had the same energy. 
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Fig. 3 
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Plots as in Fig. 2, with space-charge forces 
included. The isolated crosses were obtained by 
the pill-box model, the joined points by the 
continuous-fluid model. 
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Fig. 4 Graphs to illustrate how the charge density is 
obtained from the function f(s,t), when it is 
monotonic (a) and when it has extrema (b). 
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Fig. 5 

Fig. 6 
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Illustration of how the singularities in the charge 
density are related to the extrema of the function 
f(s,t). 
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A sketch of the form of the integrand in Eq. (5) 
when f(s,t) has the form shown in Fig. 5 and 2 
lies between 21 and Z2' 
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Fig. 7 

Fig. 8 

> 
Q) 

-'" 

800 

+ PILL BOX 

x CONTINUOUS FLUID 

0 760 
a::: 
w 
z 
w 

> 
Q) 

-'" 

r 
(9 
a::: 
w 
z 
W 

720~--~ __ -L __ -L __ ~ ____ L-__ ~ __ -L __ ~ ____ L-___ 

- .025 .000 .025 

Z METERS 

Plots of energy versus Z at the accelerator 
entrance for a buncher with energy gains of 27 kev 
and 10 kev at coincident first and second harmonic 
gaps; the distance from the gaps to the accelerator 
entrance is 97.86 cm. The points joined by the 
solid lines were calculated by the continuous-fluid 
method, those by the dashed lines by the pill-box 
method. In each case 20 test/quasi particles were 
used per bunch. 
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Same as Fig. 7 for 40 test/quasi particles per 
bunch. A few of the central quasi particles for 
the pill-box calculation are not shown. 
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