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Summary 

In a periodic structure, there are always 

two basic waves for each fre~uency. Inside a 

passband, these basic waves are the two travel

ling waves which can propagate in both 

directions down the structure. At the edge of 

a passband (0 or n mode), the two travelling 

waves become identical, and another basic 

solution must be found. This second solution, 

instead of being periodic, varies linearly 

along the structure. One of the basic waves 

is thus periodic, while the second one is non

periodic, and they have opposite parities with 

respect to a symmetry plane of tqe structure. 

If we consider the adjacent edges of two 

neighbouring passbands, the two periodic waves 

at these two cut-off fre~uencies have also 

different parities. When the structure is 

progressively deformed until the two adjacent 

cut-off fre~uencies merge, that is when the 

structure is being compensated, the non

periodic wave at one fre~uency tends towards 

the periodic wave at the other fre~uency: 

therefore, in a compensated structure, both 

basic waves are periodic along the structure 

at the crossing point of the two passbands. 

Assume several cells of a terminated struc-

turo are c.etuned in such a way that the overall 

resonant fre~uency remains e~ual to the cut-off 

fre~uency of the perfect structure, reactive 

power flows out of the detuned cells, and such 

a non-zero flux can arise only from a combin

ation of the two basic waves at the given fre-

~uency. The field between two detuned cells 

thus varies linearly in general, whereas it 

remains periodic in a compensated structure. 

:B'inally, measured field variations along 

the axis of locally compensated non-uniform 

Alvarez structures are compared with theoretical 

estimates obtained by matching the maximum 

current on the outer wall of two adjacent 

Alvarez cells. 

Possible electromagnetic waves in a 

periodic structure 

In a periodic structure with geometrical 

period L along the z-axis, the most general 

field solution may be represented as a linear 

combination of two linearly independent solu

tions (11 , HI) and (E2 , H2). Because of the 

periodicity of the structure, the vector 

functions El(Z + L), Hl(z + L) and E2 (z + L), 

B
2

( z + L) are also solutions of the wave

e~uation,and are thus derived from the former 

solutions by the linear relations 

A 

HI (z + 

El ( z) II 

E2 (z) II 
(1) 

where the 2 x 2 matrix A is independent of the 

coordinates. 

By a suitable choice of the basic solu

tions (E
l

, HI) and (E2 , H2), the matrix A may 

be put into Jordan's canonical form. If we 

denote the two eigenvalues of A by AI' A
2

, we 

must distinguish between three cases : 

case 1 Une~ual eigenvalues, thus linearly 

independent eigenvectors. 

The canonical form of A is 
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Case 2. : Equal eigenvalues A with one eigen

vector. 

The canonical form of A is 

II ~ ~ II 
where ~ is any constant different from 

zero. 

base 3 I Equal eigenvalues A with two indepen

dent eigenvectors. 

The canonical form of A is 

1/ ~ 
This case thus corresponds to the 

particular value ~= O. 

~ II 

The determinant of A is easily shown [1] 
to be unity. Therefore Al 1.2 = 1 in all cases, 

and we may take 

( 2) 

where e may be complex. 

We now look for the implications of eq.(lJ 

in the three cases. 

Case 1. Al f 1.2 ' i.e. 

(n, any integer). 

From (1) and (2) we get 

( El (z + 1) 

1 
E2 (Z + 1) 

- je ... ( ) 
e El z 

(3) 
-je ... ( ) 

e HI Z 

The two basic solutions (El,Hl ) and 

(E2 ,H2) thus appear as waves travelling res

pectively in the positive and in the negative 

z-direction, both having a (complex) phase 

shift e per cell along the structure. 

We have A = 1 when 9 = 0 and A = -1 when e 

This case thus corresponds to the edge of a pass

band. 

Since the matrix A is supposed to have only 

one eigenvector corresponding to A, we get with 

Jordan's canonical form 

I El(z + 1) 

1 E2 (z + 1) 

, 

j El (z + 1) 

1 H2 (Z + 1) 

ar more generally 

El(z + p1)= AP81 (z) 

E2 (Z + p1)= AP [E2(Z) + p ~ El(Z)] 

(5 ) 

El(z + p1)= APHl(z) 

H2(Z + p1)= AP [H2 (Z) + p ~ Hl(Z) ] 

1, 2, 3 ••• 

p 0, 

-1, -2, -3 ... 

..... .... 
The solution (E l , HI) is periodic, with 

period 1 when e = 0 and period 21 when e = n. 

It may be considered as a travelling wave 

having a phase shift per cell equal to 0 or n, 

but nothing allows it to be distinguished from 

a standing wave. 

The second solution (E
2

, H
2

) exhibits an 

overall linear variation along the structure, 

and is defined only up to an additio~al term 

proportional to the periodic solution (El,Hl ). 
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From (5) we get the complex Poynting 

vector along the structure 

for the periodic solution, 

~ [El x Hl*] = ~ [El x Hl*] 
(z + p1) (z) 

for the non-periodic solution, 

( 6) 

If we consider the region of the structure 

which is enclosed between two cross-sectional 

planes at z and (z + p1), the difference be

tween the average electric and magnetic energy 

stored in this region is proportional to the 

total flux of the complex Poynting vector 

flowing into it. For the periodic solution, 

this flux is zero by virtue of (6): in every 

cell, the stored electric and magnetic energies 

are equal. As shown by (7), such an equality 

does not hold for the non-periodic solution. 

Since the matrix A is now supposed to have two 

independent eigenvectors corresponding to A, 

we get with Jordan's canonical form 

f El(z + 1) 

1 E2 (z + 1) 

AEI (z) 

(8 ) 

In this very 

(E
2

, H2) are 

L when 9 = 0 

.......... 
particular case both (El,Hl ) and 

periodic solutions, with period 

and period 21 when 9 = ~. They 

may be considered as travelling or standing 

waves. In the mathematical theory of Hill's 

differential equation [2J, this case is called 

a case of coexistence of two periodic solutions. 

Since the most general solution is a linear 
-. ~ -+ ...... 

combination of (El , til) and (E 2 , H2), any 

solution is then periodic. 

1;* 
+-

2 

(7) 

In short, within a passband or a stopband, 

there exist two basic travelling waves defined 

by (3). At the edges of a passband, 9 = 0 or 

~ : the waves travelling in the positive or in 

the negative z-directions become identical to 

each other and consequently also identical to 

standing waves. 

period 1 when 9 

They are periodic in z, with 

o and period 21 when 9 = n. 

The second linearly independent wave, 

according to (5), is in general non-periodic 

instead it varies linearly along the structure. 

In very special cases, however, the second basic 

wave is also periodic down the structure. 

Symmetry properties of the solutions at 

o mr 41 mode in a symmetrical structure 

1et us assume, which is the case for most 

accelerating structures actually used, that 

the unit-cell of the structure has a symmetry 

plane normal to its axis. If such a plane is 

chosen as the origin of the z-coordinate, all 

the planes z = n ~ (n, any integer) are also 

symmetry planes of the structure. 

Due to the symmetry or the structure about 

z = 0, it may be shown [lJ that the periodic 

solution is either symmetrical or antisymmetrical 

about z = O. The second (in general non-

periodic) basic solution may then be taken 

Proceedings of the 1968 Proton Linear Accelerator Conference, Upton, New York, USA

447



respectively as antisymmetrical or symmetrical 

about z = o. 

It is also worth noticing that the parity 

of a periodic solution is the same about all 

symmetry planes of the structure in 0 mode, 

but in n mode this parity is different about 
L 

the symmetry planes z = nL and z = (2n + 1) "2 

Boundary conditions for the two basic 

waves at 0 or n mode in a symmetrical 

structure 

From the symmetry properties just mentione~ 

there are two possibilities : 

a) z = 0 is an antisymmetry plane for E
l
,H

2 
and a symmetry plane for 1

1
, E

2
• 

Designating with a subscript t the part 

of the field which is transverse to the z-axis, 

we get at once 

o 

We do not write the conditions for the 

z-components of the fields, because they follow 

from the conditions for the transverse compo

nents by Maxwell's equations. 

Taking z = 

J HI (~) 
1 H2(~) 

L "2 in equation (4) yields 

~ L ~ L 
AE (- -) +i;; E (- -) 

2 2 1 2 

Ali (- ~) 
1 2 

AH (- ~) + ~H (- ~) 
2 2 1 2 

In 0 mode, A = 1. Using again the sym

metry properties about z = 0, we obtain 

In n mode, A = -1. Therefore 

) ~ -b z = 0 is a symmetry plane for E
l

, H2 and 
-+ -+ 

an antisymmetry plane for HI' E2 • 

This case is deduced from a) by permuting 
... -+ 
E and H. Whence 

o o 

In 0 mode, 

- L Hlt ("2) o 

In n mode, 

.... L 
Elt ("2) o 

These boundary conditions are summarized 

in table I. The periodic waves are determined 

by homogeneous boundary conditions, to which 

there corresponds a discrete spectrum of eigen-

frequencies. In contrast, the non-periodic 

waves are determined by non-homogeneous boundary 

conditions which require a preliminary know

ledge of the corresponding periodic wave, and 

also prevent the non-periodic waves to be 

excited in a finite ideal structure terminated 

by metallic end-plates. 

In all cases, the flux of the complex 

Poynting vector across any symmetry plane of 

the structure (at z = n~) is zero for the 

periodic wave. 

Taking for example z = 0 in (7), we then 

get for the non-periodic wave 

~[Br2 x H2*J - ~ [Br2 x 12*] 
(pL) (0) 

~ lr~ [El x w2* ] 4*[B2 x lfl* ] } 
(0) (0 ) 

The flux of the complex Poynting vector 

across a symmetry plane of the structure thus 

varies linearly from cell to cell ; in other 
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Table I. Boundary conditions for the two basic waves at a passband-edge 

I 

a) The periodic wave is anti symmetrical b) The periodic wave is symmetrical 

about the plane z ~ 0 about the plane z ~ 0 

o mode 

Periodic wave Periodic wave 

i 

I I 
, 

I I 
I i 

I i 

I 
i 
i 

0 L 0 L 
2 2 

Non-periodic wave Non-periodic wave 

I 

Hi <:; 

I itt 
<:; 

I (periodic
L 

(Periodic
L 

~ 

2 . ~ - . 
! field at 2) 2 

field at 2) ------
0 L 0 L 

2 2 

Jt mode 

Periodic wave Periodic wave 

I 1 l I 
0 L 0 L 

2 2 

Non-periodic wave Non-periodic wave 

, 
"it 

<:; [ -> ~ 
I ~ - 2 (periodic

L 
Ht 

~ - 2 . (Periodic
L I 

I field at 2) field at 2) I 

0 L 0 L 
2 2 

-

short circuit (it ~ 0) ------ open circuit (itt ~ 0) ---
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FiG'1ITe 1. The two basic waves at 0 mode in an Alvarez struct1ITc vii thout stcms 

(Proton energy 18. 737 Ji~ev) 

a) Pcoriodic wave, antisymmetrical wi tl., respect to the plane z = O. 
b) lion-periodic Vl8.ve, symmetrical with respect to the plane z 0.· 

words, the difference between average electric 

and magnetic energy stored in a cell is the 

same from cell to cell,but it is not zero for 

the non-periodic wave. This fact together 

with the non-homogeneous boundary conditions 

show that the non-periodic wave is not 

resonant, but driven at the fre~uency of the 

(resonant) periodic wave. A somewhat similar 

idea has been put forward recently by 

Carter [3J. 

As an example, the boundary conditions of 

table I have been used to compute the two 

basic waves at 0 mode in an Alvarez struct1ITe 

without stems [4J. For such a E
OIO 

mode, the 

periodic wave is antisymmetrical about the 

plane z = O. The electric field lines, or 

lines of constant rH~, are shown in figure 1 

for both waves. The indicated numerical 

values are those of rH~, normalized to the 

maximum value for the periodic wave. For the 

non-periodic wave, they correspond to ~ = 2. 

Parity of two periodic waves correspondJEE 

to adjacent cut-off freguencies 

Two neighbo1ITing passbands of a struct1ITe 

may lie close together at n mode (fig1ITe 2a) or 
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at 0 mode (fig. 2b). If, by continuous deform- This statement is illustrated in figure 2. AI-

ation of the structure,the two adjacent cut

off frequencies can be brought together so that 

the two passbands join up, the passbands are 

said to be confluent and the structure is 

called compensated. 

The periodic waves corresponding to two 

adjacent cut-off frequencies must satisfy the 

boundary conditions of table I~ at the same 

time their eigenfrequencies may become 

infinitely close by progressive shaping of the 

structure. Since the spectrum of eigenfre-

quencies is discrete for all homogeneous 

boundary conditions of table I, this means 

that, except for the case of degeneracy which 

we disregard here, the two periodiC waves cor

responding to adjacent cut-off frequencies must 

have different parities. 

w; 
i) 

__ -----1-__ 8 I 
o 

FIg 2b 

wi w; w; 
2' I ;2' 

w, 
w, w, 

w; w, 

8 8 

Normal structures Comp~nsaf~ structurt's 

Fig. 2. Lispersion curves, srowing the sym
metry of the periodic waves at cut-cff for 

two adjacent passbands. 

angular frequency of a periodic 
symmetrical wave 

angv.lar frequency of 20 periodic 
,lntis;ymL~ctrical wave 

though it is the only statement which can be 

made about the symmetry of periodic waves at 

cut-off, it is particularly important. First, 

it implies that in an ideal terminated structure, 

only one of the two periodic waves corresponding 

to adjacent cut-off frequencies can be excited, 

because only one periodic wave can satisfy the 

boundary conditions at the end-~lates. More

over, when the stopband between two neighbouring 

passbands is made vanishingly small, the two 

periodic waves at the edges of the stopband 

ultimately become two periodic waves having the 

same frequency but opposite parities, thus re

presenting two linearly independent periodic 

waves: there is coexistence of two periodic 

solutions, which is just case 3. We see now 

that this very special case arises when the 

structure is compensated. It is also clear 

that, except for the case of degeneracy, the 

two coexistent periodic waves have different 

parities. 

Compensated structures 

In such a case of coexistence, the two 

sets of boundary conditions a) and b) in table I 

simultaneously admit a solution at the same 

frequency. This means that the homogeneous 

problem associated with the non-homogeneous 

boundary conditions for a non-periodic wave 

now admits a non-trivial solution at the fre

quency of the periodic wave: the non-homogenous 

problem then no longer admits a solution at 

this frequency, and the non-periodic wave no 

longer exists. This is to be expected, since 

the two basic waves are periodic, so that every 

solution is also periodic. In fact, when the 

stopband is shrinking to zero,~ is going to 

zero, and the non-periodic wave ultimately re

duces to the periodic wave with opposite parity~ 

the two basic waves thus remain con~uous when 

passing through the compensated case. 

An accelerating structure is normally 

designed to work with a periodic wave in 0 or 

1\ lIWae- {thiS walTg ~et· be ant-isymmetrical with 

rsspe-e"t to' ~ metallic end-plates o..f -thacavity) , 
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so that the field is periodic down the structure. 

If some perturbation of the structure causes 

the second basic wave to be excited, the total 

field will remain periodic in a compensated 

structure, because this second wave is also 

periodic down the structure. In a non-compen-

sated structure, on the other hand, any excita

tion of the second (non-periodic) wave will in

duce a tilt in the total field, since this non

periodic wave varies linearly along the struc

ture. 

The second basic wave is always excited 

when several cells of a terminated structure 

are de tuned in such a way that the overall 

resonant frequency remains equal to the cut-off 

frequency of the perfect structure. Indeed, 

due to the unbalance between stored electric 

and magnetic energies in the detuned cells, 

reactive power must flow out of or into these 

cells. As already pointed out, the flux of 

the complex poynting vector across any symmetry 

plane of the structure is zero for a periodic 

wave; such a non-zero flux can arise only from 

a combination of the two basic waves, which 

leads to the most general non-periodic solution 

for normal structures, and to a superposition 

of periodiC solutions having both parities for 

compensated structures. The field between two 

detuned cells thus varies linearly in normal 

structures, whereas it remains periodic in a 

compensated structure. 

An important remark should be made here. 

If instead of the axial electric field, we con

sider the integral of this field on the axis 

over a cell length, we get from equation (5): 

L 
+ pL 0+ 2 

j E
2
(Z). -+ 

dz 

L + pL - "2 

When the periodic field El is symmetrical about 

z 0, the • di vanishes, and 

the integral of the non-periodic field over a 

cell 

L 
~+ 

length J L 

pL 
i2 . d7 is then periodic. 

2 + pL 

In drift tube structures it is essentially 

the integral of the field which determines the 

acceleration in a gap. Taking the z-origin in 

the middle of a gap, there are two possibilities: 

a) the periodic vrave is anti symmetrical about 

z = 0 (this is always the case when the struc

ture is terminated by a metallic end-plate at 

z = nL). Then the voltage of the periodic 

field across a gap does not vanish, and by 

(10) the voltage of the non-periodic field 

varies linearly along the structure. 

b) the periodic wave is symmetrical about 

z = O. The voltage of the non-periodic field 

across a gap is then also periodic down the 

structure. 

Although the latter possibility can never 

be realized in a uniform structure which is 

terminated by a metallic end-plate at z = nL, 

it can OCCtIT locally in a non-uniform structure, 

as shown in figure 3. This figure is part of 

the recent measurements made at CERN in order 

to investigate the field stability against 

perturbations in an accelerator tank[5]. It 

shows the variation of an averaged electric 

field E • giL along a scale model of the 
max 

tank 2 (10-30 MeV) of the CERN linac injector. 

...... 
dz + (10 ) 

In figure 3 this model was compensated on the 

average in 0 mode by using a cross-bar stem 

configuration with two stem diameters : 
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F'igl;re 3. Electric field along the axis of a partially compensated non-uniform structure, 
and resonant fre~uencies of individual cells in the Alvarez and stem 0 modes. 

without perturbation (fre~uency 1253.54 MHz) 

.-.-.- witi'. a tank perturbation of -2 ]\;I!-Iz in cell 1 

a diameter of 6.16 rum, which would compensate structure, there must be a discontinuity in the 

locally the cell no. 10, and a diameter of 12 lllT't, field slope when the stem diameter changes 

which would compensate locally the cell no. 26 

(see figure 17 in ~eference 5). It is remark-

able that the slope of the field just vanishes 

in the neighbourhood of these cells. Consider-

ing the structure as locally uniform, we expect 

from the above reasoning that the field should 

be flat in the cell where the operEting fre

~uency e~uals the 0 mode frequency of the stEm 

resonance, since the periodic wave is then 

sy=_etrical about z = o. At this cell the 

slope of the field changes sign, as does the 

differe'~ce -between the 0 mode fre~uency of the 

stem resonance and the operating fre~uency. 

Since the same situation occurs twice along the 

abruptly. 

Figure 3 also shows theoretical estimates 

of the local Alvarez and stem 0 modes fre~uencies 

along the tank, together with an estimate of the 

operating fre~uency. The discrepcLllcy of 3.5 111Hz 

between this estimate and the measured operating 

fre~uency can be attributed to manufacturing 

errors in our tank 2 model [5J 

Non-uniform compensated structures 

When a structure is not strictly periodic, 

it must be compensated locally everywhere in 

order to achieve good field stability against 
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perturbations [5J . Once this has been done, 

the structure is extremely insensitive to manu

facturing errors and is thus likely to produce 

the theoretical field which is computed for a 

perfect structure. 

For tank 1 (figure 4), the splitting of 

the theoretical curve into three parts marked 

with A,B,C corresponds to a change of the drift 

tube bore diameter from A to B, and of the 

drift tube outer diameter from B to C. The 

agreement between theoretical and measured 

The Question then arises, how to compute fields is as good as may be expected from the 

the theoretical field in a non-uniform Alvarez mechanical accuracy of the model; in fact, the 

structure by matching cells which are computed difference between the measurements made on 

individually using short-eirclcit boundary condi- the two types of compensated structures for tarn: 

tions (see table I,a). This matching of 1 shows the magnitude of the experimental 

computed fields is clearly not possible every - errors. 

where on the COlPJlIon surface between two adjacerct 

cells. Nevertheles8, for low energy cells, 

matching the azimuthal magnetic field at one 

point of this surface almost results in a per

fect matching at all other points [6]. As a 

working condition, but hoping for a better 

condition in the future, we have chosen to 

match the maximum value of rH at the outer 
<p 

wall of the cells, where this Quantity repre-

sents the total current flowing in the wall at 

the cross-sectional plane which passes tlrrough 

the middle of a drift tube. 

This has been done for the 25 first cells 

of the new injector in Saclay (0.75-5 MeV) and 

for the tank 2 of the CERN linac rrJ L..J • The 

average axial field per cell turns out to be 

very nearly constant in both cases. The 

corresponding computed variations of the axial 

field at the centre of the gaps,referred to the 

average field in the first cell, and multi

plied by giL in order to deal with a Quantity 

which varies rather little along the tank, 

are shown respectively in figures 4 and 5. 
The figures also displ~y the same Quantity as 

measured by a standard freQuency perturbation 

techniQue, on the best locally compensated 

models of both tanks [5J. The absolute scale 

for the measured field has been determined by 

using the theoretical value of stored energy 

in all cells, obtained by numerical computations. 

For tank 2 (figure 5), the agreement be

tween theoretical and measured fields is still 

quite good if it is taken into account that 

the model has not been perfectly compensated and 

moreover that, due to the varying stem diameter, 

the individual cell freQuencies exhibit a large 

variation along the tank [5J : it should be 

remembered that the field perturbations due to 

tuning errors in a compensated structure are 

zero only up to the first order in these 

tuning errors. 

Conclusion ------
In a periodic structure at 0 or n mode, 

in addition to the well known periodic field 

solution, there exists a second basic solution 

which in general exhibits an overall linear 

variation along the structure. For a com-

pensated structure, on the other hand, this 

second basic solution is also periodic. There

fore, if the second basic solution is excited 

by perturbations in the ideal structure, the 

total field will have a tilt in normal 

structures, whereas it will remain periodic 

in a compensated structure. 
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gaps, for the two best locally compensated tank 1 models. 
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Figure 5. Comparison of theoretical and measured electric field at the centre of the gaps, 

for the best locally compensated tank 2 model. 

Cross-bar structure, with variable stem diameter. 
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