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Introduction 

Recent theoretical and experimental 
studies l - 14 on the effects of distributed tuning 
errors, losses and beam loading have emphasized 
the need for stabilization of field amplitude 
and phase in linear accelerators. (Such effects 
are, of course, not peculiar to linacs and some 
occur in all periodic systems.) One of the 
most significant results of these analyses was 
the prediction that all such deleterious effects 
on the accelerating field could be minimized by 
operating in a n/2 space mode o This followed 
because of the wider separation between accel
erating and higher order modes. However, wider 
mode separation can be achieved even at nand 2n 
modes in any band. The role of fields in the 
stabilizing reaction has not been described in 
a physically revealing way. The use of equiva
lent circuits introduces valuable simplifications 
which are highly productive and suggestive. 
But circuit elements, which represent integrated 
field effects, obscure the detailed behavior of 
fields and may mask other deleterious effects. 
One of the purposes of this report is to suggest 
a physical model and an appropriate measure for 
field stabilization in any periodic system. 
Additionally an approximate representation of 
the dispersion relationship, consistent with 
measured curves for stabilized cavities, will be 
applied to the expression of fields in such 
cavities. 

Field Stabilization 

First it is recognized that stabilization 
is not peculiar to n/2 mode operation. Such 
characterization is neither essential nor 
desirable. The fundamental requirement is the 
periodic modification of a structure to produce 
a joining (or coupling) of two passbands at a 
band edge where the dispersion curves have 
opposite curvature, as shown in Fig. 1. 

;"Work performed under the auspices of the U. S. 
Atomic Energy Commission o [Reprinted from 
Brookhaven National Laboratory Accelerator 
Department Internal Report AGSCD-24 (1967)J 

w 

Fig. 1. Dispersion curves for stabilized cavities. 

Such periodic perturbations may also be viewed 
as converting the original periodic structure 
into an alternating or bi-periodic structure. 
(An equivalent statement is that cell fields in 
one band are bounded by or coupled to alternately 
aiding and opposing fields from the other band.) 
Then propagation or resonant cavity oscillation 
in one band will induce periodic oscillation, 
with the same phase shift, in the adjacent band. 
These latter oscillations, representing non-prop
agating evanescent modes, driven at a frequency 
far beyond its resonance will be in time quadra
ture with, and have amplitudes proportional to, 
the resonant driving mode oscillation at the 
same point of the periodic structure. Despite its 
small amplitude, such non-propagating oscillations 
can significantly influence the phase shift of 
propagating modes across coupling regions. If the 
propagating mode lies in the upper band, the in
duced oscillation in the lower band is driven 
from above its resonance and most of its stored 
energy lies in its magnetic field. This changes 
when the relative frequency position of propa
gating and evanescent modes reverses. As 
described below, the effect of this coupling 
between bands is to produce a wider mode separation 
at the band edge, varying linearly3,4,9 with 
periodic phase instead of quadratically. As a 
result we obtain a non-vanishing group velocity 
at the previous cutoff frequency and the stabili
zation effects referred to above. 

Dispersion Relationship 

The shape of the dispersion curve near cutoff 
may be obtained as a degenerate case of the bi
periodic structureo 13 In the usual manner15 the 
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field in a cell is expanded in the normal modes 
satisfying electric wall boundary conditions and 
the Maxwell equations then lead to the following 
forced oscillation equation for the nth field 
coefficient, Vn = J E • En dv, 

2 
d Vn 2 
---+w V 

dt2 n n 
n ds 

(An additional driving integral may be added on 
the right to account for beam interactions.) 
Tangential E on the boundary may be resolved into 
three components, E = El + E2 + E3: 

E
l

, due to cell to cell field variation of 
a normal mode with negligible coupling 
to other bands in a lossless structure 

E
2

, due to losses in real boundary walls 

E
3

, due to non-propagating mode excitations 
in adjacent bands. 

If we first consider a band with negligible 
coupling to other bands in a lossless periodic 
structure, (E ~ El), then application of Floquet's 
theorem to the drive integral leads to the common 
dispersion relationship13 

2 2 
w - w 

n 
2 

w 

giving a quadratic dependence of w on cell to 
cell phase, k L o ' at cutoff. 

Wall losses are accounted for by adding the 
integral 

w r
-1LIE XH 
~ ,; 2 n 

s 

n ds 
d V 
__ n_ 

dt 

which produces a complex frequency dependent term 
proportional to l/Qo and makes the propagation 
constant complex, in the dispersion relationship,2 

2 2 
wn - w - (1 - j) 

w w __ n_ 

Q
on 

The imaginary component gives an additional phase 
shift per cell, which removes the cutoff points, 
opening up the ends of the band. The original 

frequency band is now contained within a slightly 
reduced phase band with apparent 0 and IT edges 
bordered by open regions }imited to phase shifts 
of order [fo/Qo (6f)bandJ~. However, such border 
regions are very small for large bandwidth, 
high-Q structures such as drift tube linacs. 

Finally the effect of coupling to an adjacent 
band is obtained from the integral,S E3 X ~o ~ ds, 
including the effect of non-propagating modes 
having the same cell to cell phase shift as the 
propagating mode. Consider a single cell approxi
mated with discontinuous boundary regions and 
fields represented in Figo 2. 

0 0 X 0 ~ I .. i i I / 
Ve jCjl 

t--~. 
Ve- jCjl 

~ \ ~ ~ \ 

x.-~ .Sl2 . 
-j€Ve J 2 +j€Ve J 2 

Fig. 2. Cell, showing boundary fields. 

V represents the propagating mode and € is a 
small number measuring the amplitude of the 
evanescent mode relative to the propagating mode, 
which falls off rapidly with band separation. 
The cutoff oscillations are in time quadrature 
with and symmetrically distributed in phase with 
the propagating mode oscillations and the sign 
reversal corresponds to the requirement of 
stabilizing fields which alternately aid and 
oppose the oscillating field in the propagating 
band. Evaluation of the driving integral then 
leads to the proportionality 

CI I 2V _ Vejc.p 
L. 

CI [2V (1 - cos Cjl) + € 2V sin I ] 
and the dispersion relationship becomes 

2 2 
w - w 

( 0 

2 V BV \ 1 - cos Cjl + € sin 
w 

whence, defining 45 - B€ 

2 2 
w - w 

0 45 sin 2.+ B (1 Cjl) 
wL 2 

- cos 

2. \ 

2 
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The coupling to the adjacent stabilizing band 
produces a linear dependence of (w - wo) on ~ in 
the cutoff neighborhood around ~ = O. Thus the 
slope of the dispersion curve at w = Wo becomes 
dw/d~ = - woS and the measure of mode separation 
or stabilization is 

- S 

Similar results mal be derived from the 
analyses of Nishikawa3 , and Nagle, Knapp and 
Knapp.S We can readily show that lSI ~ Kl/2 in 
Ref. S notation and lSi ~ IB78 where 
B ~ 2;--CC!L) • (L s 7C s ) in Nishikawa's notation. 

The stabilization factor S decreases rapidly 
as the bands separate and the dispersion curves 
revert to the original form given above for the 
isolated band o 

The stabilization factor also depends on 
the spatial distribution of the propagating and 
evanescent fields, which in turn depends on the 
geometry of the periodic perturbations in the 
structure o Comparison of different stabilizing 
modes arising from different periodic perturba
tion geometry is obtained by measuring the linear 
slope of the dispersion curve at the cutoff point 
of the accelerating band. If the fundamental 
periodicity also changes, as in a variable S 
accelerating structure, there will be correspon
ding changes in the curvature of the dispersion 
curve and stabilization factor, S (S). 

Steady State Field 

Stabilization effects on cavity field amplitude 
and phase distribution are shown by substitution 
of the dispersion relationship into the field 
expressions. Applying Nishikawa's results l to a 
lossy cavity with two in-phase drives spaced L/4 
from each end, we may write the field in the 
following manner: 

E(z,t) 
E ejW~t 

o 

= 1 + 2j 

n=1,2,3,---

cos (4n - 2) TTz/L 
+ ~(4n - 2) ,2 ,2 

w (4n _ 2) - w 0 

[ 
cos (4nTTz/L) 

,2 ,2 
w - w 4n 0 

cos (2n - 1) TTz/L ] 
+ ~(2n - 1) ,2 ,2 

w(2n _ 1) - w 0 

In this expression, which is valid for 
small n, the coefficients, ~, measure the ampli
tude of higher order modes relative to the 
dominant mode. If the symmetry of the cavity and 
the L/4 + 3L/4 drive completely suppress the 
odd-numbered higher order modes, the steady state 
field may be approximated by the first two even 
terms above. Thus, using the previously derived 
approximation for the dispersion relationship of 
an N-cell stabilized cavity near cutoff, we find 

and 

E(z,t) 

E e jwot 
o 

1 - __ 1_ ( cos 4TT
L

Z + 2 n cos 2TTZ \, 
4nQ S '12 L) 

o 

It can be seen that the quadrature field and 
corresponding phase shifts within a cavity oper
ating at cutoff varies inversely with the stabi
lizing factor o The same conclusion may be drawn 
for the perturbations due to distributed tuning 
errors. 

Conclusions 

Stabilization of periodic fields has been 
described together with a measure of such stabi
lization. Dispersion relationships and fields 
have been expressed for stabilized cavities. 
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