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Fig. 1 shows two chains of N in
ductance-capacitance-resistance loops hav
ing inductive coupling (with coupling corr
stant k) between nearest neighbours. Chain 
A is terminated with half loops, chain B 
with full loops. The resonant frequency, 
wo, and the quality factor, Q, are the 
same for all loops in both chains. Such 
chains are useful in studying the response 
and the sensitivity to error of tanks of 
magnetically coupled cavities of the type 
that might be used in an 805 Mhz standing
wave proton linac. Work at Los Alamos 1 

has shown that for many of its properties 
a linac tank may be represented by an 
equivalent circuit of the type shown. In 
this paper an analysis is presented of the 
steady-state response of both chains to a 
driving EMF, shown in the pth loop in the 
figure. The useful insensitivity of the 
loop currents to parameter error in the 
TI/2 mode is shown to extend to the second 
order of perturbation theory. 

The circuit equations are conven
iently written in the matrix form 

MI = Viz. (1) 

I is a vector whose elements are the N 
loop currents, while V is the vector of 
driving EMF's; z = jwkL. M is the tri
diagonal matrix 

M = pex 
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p = ~ for chain A and 1 for chain B. 
Some elements of M are functions of the 
driving frequency, w, as well as the loop 
parameters through 

2 2 2 -1 
a - k [l-wo Iw - j Q wo/wJ. (3) 

To get the loop currents we need 
the inverse matrix M- 1

, 

1= M- l Viz. (4) 

I have been able to find closed expres
sions for the elements of M- 1 in terms of 
a complex quantity ¢, defined as a func
tion of w through (3) and 

ex = -2 cos ¢ 

Let {M- l } a rs - rs 

For chain A and r ~ s 

cos(r-l)¢cos(N-s)¢ 

sin ¢ sin(N-l)¢ 

For chain Band r ~ s 

a rs 
sin r¢ sin(N+l-s)¢ 

sin ¢ sin(N+l)¢ 

If r > s, use a rs a sr 

(4) 

( Sa) 

(5b) 

The second factor in the denomina
tor of each form of (5) becomes very small 
for N values of w corresponding to the N 
natural frequencies of the freely oscilla
ting chain. In accelerator design we are 
interested in the relative values of the 
loop currents when w is equal to one of 
these resonant frequencies. We shall put 
w equal to one of the resonant frequencies 
and then expand a rs in powers of 

1 
kQ ' 

which is approximately 10- 3 for typical 
accelerator parameters. 

b 
rs + C + d ~ + .... 
~ rs rs 

(6) 

Simple analytic formulae are available for 
the coefficients b rs etc. The larger the 
value of Q the more dominant is the first 
term on the right in (6). The loop cur
rents calculated from the first term are 
exactly proportional to the currents which 
would flow in free oscillation. The ef
fect of the second term in (6) is to in
troduce a loop-to-Ioop phase-shift whose 
magnitude is proportional to~. This 
phase-shift is just what is required to 
account for the propagation of energy 
along the chain for dissipation in the 
resistors. 

The TI/2 mode has the important 
property that Crs = 0 whenever b rs = O. 
This property corresponds to the fact that 
the odd-numbered loops are all in phase 
when a chain is driven in the TI/2 mode, 
regardless of the value of Q. 
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While absence of phase-shifts is 
an important reason for choosing the IT/2 
mode, I am more concerned here with sensi
tivity to errors in loop parameters. These 
errors may be included in the circuit 
equations by replacing M by M+m; m is a 
symmetric matrix whose connection to three 
kinds of parameter errors we shall next 
consider. 

i) Errors in the resonant frequencies of 
individual loops affect diagonal ele

ments of m only. If the rth loop is mis
tuned by 6Wo ' then (for chain B) 

( 7) 

The multiplier 4/k is large, of the order 
of 80. For an error of 0.1 Mhz in 800 Mhz 
mrr is of the order of 0.01. 

ii) If the coupling constant between the 
rth and the (r+l) loops is k(l+E) in

stead of k, then 

= E (8 ) 

iii) Let the coupling constant between 
second neighbours be k 2 • We shall 

treat all of this coupling as a perturba
tion. 

(9) 

In the presence of perturbations 
we replace I in the circuit equations by 
(I+i); the elements of the vector i repre
sent the changes in the loop currents re
sulting from the errors in circuit parame
ters. Ordinary first-order perturbation 
theory gives 

i C\!. -
-1 

M mI. (10) 

Here also the inverse matrix M-l plays an 
important role. Using expansions of the 
type (6) one can show that the relative 
change in current in the nth loop has the 
form 

(11) 

The coefficients A, Bn etc. are linear 
combinations of the elements of m. The 
first term in (11) is large, but is inde
pendent of n; thus it does not affect the 
relative values of loop currents. The 
second term corresponds to a variation of 
current amplitude along the chain. In 
general it is not zero. 

From this point onward it is con
venient to confine our attention to the 
IT/2 mode. Formulae for in/In are to be 
used for odd-numbered loops only. The odd 
-numbered loops correspond to accelerating 
cells, the even-numbered loops to coupling 
cells. The great insensitivity of the IT/2 
mode (with either termination) to pertur
bations results from the vanishing of Bn 
in various circumstances. The contribu
tion of an element mrs to Bn is zero if r 
and s are both odd or both even. Thus 
frequency errors in either type of cell 
have no effect on Bn. Furthermore, coup
ling between like cells of either type 
also has no effect on Bn; in particular, 
second-neighbour coupling does not affect 
the loop currents through Bn. However, 
couplings between unlike cells do have an 
effect. In particular, if the coupling 
between the rth and the (r+l)th loops is 
k(l+E)instead of k and r is even, then the 
value of in/In (n odd) drops by -E as n 
passes over r. 

For frequency errors the largest 
n-dependent contributions to in/In come 
from the third term in (11). Because of 
the factor ~ they are small, but they are 
worth calculating. Assume an error in the 
rth loop only, giving mrr as calculated in 
(7). The perturbation of the current, a 
phase-shift, is shown in Fig. 2. The n
dependence of the phase-shift depends on 
whether r is even or odd. The abscissa is 
loop number (confined to odd integer 
values) and running from 1 to N. The 
driving EMF is assumed to be in the pth 
loop. When a coupling cell is mistuned 
(i.e. r even), the phase-shift is uniform 
except for a jump as n passes over r. The 
size of the jump is r~mr~ for chain Band 
(r-l)~mrr for chain A; this is one of the 
few places where the type of termination 
has any effect for a IT/2 mode. Note that 
the size of the jump is larger for mis
tuned loops near the driven loop. When 
the tuning error is in an accelerating 
cell (i.e. r odd), the phase-shift varies 
linearly between the mistuned loop and the 
driven loop and is uniform outside this 
interval. The difference between the two 
uniform sections is (p-r)~mrr for both 
terminations. Note that this difference 
is largest when the mistuned cell is near 
an end of the accelerator. For both types 
of errors the form of the effect on the 
current distribution depends strongly on 
the position of the driven cell. 

The phase-shifts we have been dis
cussing are of the order of 10- 4 radians. 
They are so small that one wonders whether 
second-order terms - i.e. terms propor
tional to mr mso - might not be more 
important. ~ have been able to show that 
in may always be expressed as the ratio of 
two polynomials of order N in the elements 
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of m. A second-order theory is obtained 
by discarding all terms of order higher 
than two in both polynomials. With 

and 

H=M-lm (12) 

D - 1 + L 
r 

( 13) 

in -1 a 
-I = - D L ~[H + (H H -H H ) 1 (14) a nr ss nr ns sr n r np s 

The second term in D is proportional to 
the shift in resonant frequency induced by 
the perturbation and to Q. The denomina
tor D and the first term in (11) together 
ensure that the loop currents become very 
small when the perturbations move the 
resonant frequency away from the driven 
frequency. In the rest of this paper it 
is assumed that the perturbations have 
been adjusted so that D ~ 1. 

Next we re-arrange (14) to exhi
bit the dependence on the elements of m, 
for frequency perturbations only. 

i n 
r'" 

n 

L L (IS) 
r s>r 

The first-order terms in (IS) have already 
been considered, in Fig. 2. The second
order coefficients may also be expanded in 
powers of~. They contain no ~-l terms; 
we shall retain only the terms independent 
of~. Then the coefficient Crs(n) is in
dependent of n if rand s are both even or 
both odd; that is, there are no second
order variations in loop current resulting 
from frequency er~ors in like cells. If 
one of rand s is even (say r) and the 
other odd there is an effect, but only if 
r lies between sand p. In other words, 
there is an effect only if the mistuned 
coupling cell lies between the mistuned 
accelerating cell and the driven cell. 
Then there is a jump in the current ampli
tude of magnitude - mrrmss as n passes 
over r toward p. If mrrmss is negative, 
the picture is similar to the upper half 
of Fig. 2, except that amplitude is to be 
plotted instead of phase. 

The analysis may be extended to 
include the contributions from off-dia
gonal elements of m; terms of the form 
mrpmsa appear in (IS). It has been shown 
that there is no n-dependence unless two 
of the four indices r,p,s, and a are odd 
and two even. Thus second-neighbour coup
ling between cells of one kind has no 

effect on relative currents, even in 
second-order perturbation theory. Nor are 
there any cross-terms between the second
neighbour coupling of accelerating cells 
and frequency errors in accelerating cel~. 
The only other important terms arise from 
the combination of a frequency error in a 
coupling cell and the coupling between a 
pair of accelerating cells. This happens 
only if the mistuned coupling cell separ
ates at least one of the accelerating 
cells from the driven cell. Again there 
is a jump in amplitude as n passes over 
the mistuned coupling cell, this time of 
magnitude 2mrr m s+2; if the coupling 
cell separates the two accelerating cells, 
the 2 is lacking. 

In summary one can say that very 
definite statements have been made about 
the effects on relative currents of errors 
in the parameters of individual loops. 
These should be useful in further studies 
of the validity of the equivalent circuits. 
The magnitude of the effects resulting 
from parameter error depends on the dis
tribution of the errors. For frequency 
errors of the order of 0.1 Mhz the effect 
on the currents will be of the order of 
0.1%. Because errors in coupling-cell 
frequencies combine with both errors in 
accelerating-cell frequencies and acceler
ating-cell coupling, there is some reason 
to make the tolerance on frequency tighter 
for coupling cells than for the others. 
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CHA 1 NS OF COUPLED CI RCUITS 

TYPE A 
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Fig. I 

Fig. 2 
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Chains of resonant circuits representing linac 
tanks with different types of terminal cells. 
In each case there are N loops in all and the 
drive is in the pth loop. 
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Variation of phase with cell number n calcula
ted in first-order perturbation theory for a 
frequency error in the rth cell for a n/2 mode 
with termination B. It is to be understood 
that n takes odd integral values only. The 
drive is in the pth loop, p odd. For termina
tion A the only change is that the step for r 
even becomes (r-l)~mrr' 
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