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I. Introduction 

This paper summarizes Some of the experiences 
met in applying the JESSY mesh-iteration program 
to the calculation of the fields and resonant fre­
quency of cells in a 200-MeV proton linac. 

Each tank of the linac consists of a large 
number of cells as shown in Fig. lao The number 
of cells varies from 57 in the first tank to 19 in 
the last or ninth tank. The length of the cells 
increases from about 6 cm for the first cell to 
about 84 cm for the last cell. Mesh-iteration 
programs cannot easily solve for the fields in the 
entire tank. Instead the mesh-iteration program 
treats the problem of the single cell whose end 
boundary conditions require the fields to be peri­
odic with the period of the cell length. The cell 
is shown in Fig. lb. 

The lowest mode of the cell can be found by 
solving the differential equation 

(1.1) 

where F ; r Hw, and Rw is the azimuthal component 
of the magnetic field: The lowest mode has only a 
H~ component in the magnetic field because of the 
cylindrical symmetry. The function F is used be­
cause of its simple boundary conditions which are 
that OF/an; 0 on all boundaries except the r ; 0 
boundary, where F ; O. 

The electric field can be found from F ac­
cording to the equations 
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In addition, there exists a variational 
principle 
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(1. 3) 

which can be used to find a more accurate result 
for the resonant frequency. 

A number of mesh-iteration programs have been 
written to solve the above problems for the fields 
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and resonant frequency of the lowest mode, and 
they include programs written by Edwards and 
Christian,l Taylor and Kitching,Z Hoyt, Simmonds 
and Rich,3,4 Parzen,5,6 Martini and Warner,7 and 
Katz. 

II. Iteration Procedure 

The JESSY mesh-iteration program replaces the 
differential equation by a set of difference equa­
tions for each point on a rectangular mesh. For 
each interior mesh point one obtains a difference 
equation of the sort 
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where the four neighbors of each interior point 
are indicated by Fl to F4, and the interior point 
being considered is indicated by Fo' The ai are 
found by standard methods. l 

The iteration relation used by JESSY at each 
interior mesh point is given by 

F(n) _ a R(n) 
o 
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a F(n) + a F(n) + a F(n+l) + a F(n+l) + kZ F(n). 
1 1 2 2 3 3 440 
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In Eq. (2.Z), n is the iteration number, and 
a is the over-relaxation parameter. al' a3 refer 
to the right and left neighbors and aZ' a4 refer 
to the above and below neighbors. 

Before ever2 iteration defined by Eq. (Z.Z), 
a new value of k is computed to use in Eq. (Z.Z). 
In the JESSY program, the new kZ is computed ac­
cording to Eq. (Z.l) by 

L FLF/R 
(2.3) L FF/R 

where the sum is over all interior mesh points, 
LF ; L aiFi at each mesh point, and R is the dis­
tance of the mesh point from the z-axis. 

Other programs l ,3 have used the actual varia­
tional principle, Eq. (1.3), to find a new value 
for kZ One may note that the kZ found from the 
variational principle, Eq. (2.1), is closer to the 
k2 of the physical problem being solved, but this 
k2 is not necessarily converging to the eigenvalue 
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of the set of difference equations, Eq. f2.l), 
that we are solving by iteration. The k found 
from Eq. (2.3) is converging to the lowest eigen­
value of the difference equations and it may dif­
fer from the k2 found from the variational prin­
ciple by as much as 10% for the smaller cells. 
It is shown in Section III that either k 2 may be 
used in the iteration procedure. 

The boundary condition oF/on = 0 is also re­
placed by a difference equation which is used to 
iterate the boundary points. This difference 
equation has the form 

2 
\' f\ F. 0 L l 

(2.4) 
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where the three mesh points used in Eq. (2.4) in­
clude the boundary point being considered and its 
two neighbors which lie closest to the normal. 
The ~i are found by standard methods. 8 This 
three-point algorithm is correct only to first 
order in the mesh size. An attempt was made in 
JESSY to use the second order relations for of Ion 
given in Ref. 8. However, the iteration process 
failed to converge when the second order relations 
were used for the geometry required by the linac 
cell. 

III. Theory of the Iteration Procedure 

The set of difference equations given by 
Eq. (2.1) may be written as a matrix equation, 

AF (3.1) 

where ~ = k
2 

is the eigenvalue, A is a matrix 
whose elements are the ai of Eq. (2.1) and corres­
ponds to the difference representation of the dif­
ferential operat r, -(02/0r2 - (l/r) o/or+ 02/0z2), 
and F is a column vector whose elements are the 
values of rHeo at the interior mesh points and on 
the boundary points. 

In discussing th~ convergence of the itera­
tion procedure we will at first limit ourselves to 
the case where over-relaxation is not used, and 
where in each step of the iteration only the val­
ues of F found from the previous iteration are 
used in finding the new values of F. In this 
case one may write the iteration equations as 

(3.2a) 

In Eq. (3.2), we have written A as A = D - L - U, 
where D is the diagonal, L is the lower triangle, 
and U is the upper triangle part of the A matrix. 
I is the current guess for the eigenvalue ~ which 
is used in the iteration. 

Rewriting (3.2), one finds the iteration 
matrix C, 

F(n+l) = CF(n) (3.3a) 

C = D- l (D + ~ - A) (3.3b) 

We will further simplify the analysis by as­
suming that the diagonal matrix D has the same 
positive value for all of its diagonal elements, 
and which will be denoted by a. If we then expand 
F in the eigenfunctions, us, of the matrix A, with 
the eigenvalues ~s' we see that each multiplica­
tion by the iteration matrix C reduces the compo­
nent of F associated with Us by the factor 

I - ~ 
f 1 + s 

(3.4) 

Because of the diagonal dominance property of 
A, which is discussed below, one may show that the 
largest value of ~s is limited by ~s < 2a. Thus f 
ranges between 

(3.5) 

The factor f will have its largest value for 
~s = ~o' if A, the guess for the eigenvalue, is 
very close to ~o or somewhat larger than ~o, and 
for this choice of I the iteration process will 
converge to the eigenfunction with the lowest 
eigenvalue ~o. 

The two procedures for choosing ~ mentioned 
in Section II will both lead to convergence be­
cause one choice which is based on the difference 
equat~ons leads to a I which converges to ~o so 
that ~ becomes very close to ~o, and the other 
choice of ~, based on the variational principle, 
leads to a I which is empirically known to be some­
what larger, at most about 10% larger, than ~o. 

The above discussion can be generalized to 
apply to the iteration process with over-relaxation, 
and where in each iteration values of F found from 
the current iteration as well as from the previous 
iteration are used in finding the new value of F. 
The procedure may be found in various textbooks,9,10 
and requires that the A matrix h~ve the property of 
diagonal dominance and that the elements of A be 
non-zero only when they relate F at a mesh point 
to F at the four nearest neighbors. 

The diagonal dominance property states that 
the elements of A satisfy 

a.la ,; 1 
l 0 

(3.6) 

where al to a4 all have the same sign, and the in­
equality holds for some mesh point. 

IV. Convergence Acceleration Technique 

Several techniques were applied in the JESSY 
program to accelerate the convergence: 
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The Mesh Interval Sequence 

In the JESSY program, the mesh interval in 
the rand z directions may be unequal and are in­
dicated by EL and H respectively. The convergence 
becomes slower when the mesh interval becomes 
small. The convergence may be accelerated by 
first doing the run with a large mesh interval, 
and then using the results for this run as the in­
itial load for a second run, using a smaller mesh 
interval. 

In the runs done on JESSY, EL was held con­
stant in a sequence while H was decreased in each 
step by a factor of 2. Since the mesh with smal­
ler H has more mesh points, it is necessary to 
interpolate to find F at the additional mesh 
points. 

The Initial Load 

The time required for the run is considerably 
affected by the correctness of the initial guess 
for F. By examining the solution found in several 
runs, an empirical result was found for the initial 
guess. This empirical result for F is 

F 

(4.la) 

where 

R 

10 r 2 2 J2 
L r + (z - L/2) (4.lb) 

and the parameters R, d, L are defined in Fig. lb. 

The Over-Relaxation Scan 

Over the wide range of cell dimensions which 
were run with the JESSY program, the choice of the 
over-relaxation parameter of a = 1.9 would work 
quite well. In some cases, however, when the mesh 
size was large or when the boundary of the drift 
tube was close to mesh points, a smaller value of 
a waS required for convergence and the convergence 
rate was slower. 

An empirical method of choosing a was devel­
oped which scans a certain range of a and chooses 
the a with the fastest convergence rate. The scan 
covers three values spaced at ALFO - DALF, ALFO, 
ALFO + DALF. The program runs 20 iterations with 
each a and finds the a with the best convergence 
rate, ALFMX. The next scan is done for three 
values of a centered at ALFO = 0.5 (ALFO + ALFMX), 
ul,d the DALF is reduced to DALF = 0.75 * DALF. 
The initial scan is done with ALFO = 1.8 and 
DALF = 0.1, so that the init ial scan covers a = 1.7, 
1.8, 1.9. 

There are several techniques included to keep 
the scan from going too far off. The choice of 
ALFMX after each scan is limited to be less than 
ALFLM, and ALFLM = 1.95. There is a recovery 
technique to keep the scan from narrowing down on 
an a with too low a convergence rate. After each 

scan, the best convergence rate RTMX is compared 
with RTO, which is the lowest rate one will accept. 
If RTMX < RTO, the scan recovers or starts again 
with ALFO = 1.8 and DALF = 0.1. The value set for 
RTO is RTO = 0.001, where the rate is defined as 
the percentage change in the residual for each 
iteration. 

Because of the large number of parameters in 
the a-scan, it is difficult to optimize the choice 
of these parameters. The choice given above may 
not be the best but it gives acceptable results. 
An a-scan using five values of a rather than three 
was attempted but did not give as good results. 
Runs with 10 iterations for each a seemed to do 
about as well as 20 iterations for each a. 

Integerization 

It sometimes happens that a boundary point is 
very close to a mesh point. This would give rise 
to very large weights in the iteration of the star 
point near the boundary point, which resulted in 
much lower convergence rates. 

It was found advisable to integerize the 
boundary. If a boundary point was very close to 
a mesh point, it was moved onto the mesh point. 
The criterion for close that was used was a dis­
tance of 0.0005 cm. 

V. Accuracy of the JESSY Program 

The accuracy of mesh-iteration programs is 
difficult to estimate theoretically. A comparison 
of the program results with experimentally measured 
results provides a good estimate of the accuracy. 

One criterion of the accuracy of the results 
which was found useful was to compare the average 
electric field along the axis, Eo, as computed by 
two different methods. One method of computing Eo 
is to simply integrate the electric field along the 
axis. The second method is to use the flux of the 
magnetic field across the r,z plane, which accord­
ing to Maxwell's equations should also give Eo' 
The percentage disagreement in the result for Eo 
as found by these two methods was found to be a 
good measure of the error in the electromagnetic 
fields computed by the program. 

The accuracy of the JESSY program, as found 
by comparison with the experimental measurements 
of MURA,ll Brookhaven,S and the University of 
Tokyo,12 may be summarized in the following state­
ment: The error in the electromagnetic fields is 
of the order of a few percent, and the error in the 
resonant frequency is about 0.1% except possibly 
for the very low ~nergy linac cells. 

A more complete picture of the program accu­
racy is provided by Fig. 2, where the error in the 
frequency as determined by comparison with experi­
mental measurements is plotted as a function of 
cell length for both the MESSYMESH and JESSY pro­
grams. The MESSYMESH program uses a mesh size of 
0.25 by 0.25 cm. The JESSY program can go to the 
smaller mesh of 0.125 cm in the z-direction and 
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0.25 cm in the r-direction. The results from 
Fig. 2 indicate an error of about 0.4% in the fre­
quency for the smaller L cells which can be reduced 
by decreasing the mesh size. 
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Fig. 1. The geometry of the linac cells. 
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Fig. 2. A plot of the error, 6f, in the results of mesh-iteration programs 

for the resonant frequency, as found by comparing computer results 

with experimental results. The experimental results used here were 

those of the University of Tokyo group. 
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