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ABSTRACT

Performance of the new 10-MeV linac and its low energy transport system will be
illustrated by means of partial emittances, intensities, density distributions and
energy and phase spreads. Special emphasis will be put on the influence of space
charge on the transverse and longitudinal properties of the beam. Comparison will be
made between experimental data and computational results.

Introduction

Early in the design stages of the new 200-MeV proton linear accelerator injector
for the BNL Alternating Gradient Synchrotron it was decided that in order to establish
correct operating levels for the preinjector, the low energy beam transport system
(LEBT) and tank No., 1, a series of calibration measurements should be performed before
the installation of tank No. 2, This report gives details of the computations and

measurements made both pricor to and during this calibration period.

Equipment

Complete details of the equipment used for the 200-MeV linac will be given in
other papers to be presented at this conference so only a brief summary will be given
here, Figure 1 is a schematic diagram of the equipment involved. The icn source is of
the duoplasmatron type1 with a large expansion cup and delivers up to 400 mA peak
proton current, The high gradient column2 operates up to a voltage of 830 kV and at
the output end houses a 4-in. diameter aperture pulsed gquadrupole triplet which is the
first focusing element of the LEBT system used to transport the beam from the pre-
injector to tank No. 1. This LEBT system has seven more quadrupole triplets at ap-
proximately l-m spacing. There are five viewing boxes capable of containing both hori-
zontal and vertical emittance devices simultaneously and a beam transformer for beam
current measurement. LEBT alsc contains the two 200 MHz bunchers which are capable cof
operation up to voltages in excess of 35 kV. Detailed design of the LEBT system is

described in reference 3. Complete details of the cavity, rf system, quadrupole and

*
Work performed under the auspices of the U. 5. Atomic Energy Cemmission.
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vacuum system designs are presented in other papers at this conference. Figure 1
also shows the equipment arrangement at the cutput end of tank No. 1. The first view-
ing box VBé contains an adjustable slit, a beam transformer and either a quartz plate
for viewing the becam spot size with a TV camera or an automatic electronic emittance
deviccs for radial emittance measurements. The second viewing box VB7 contains a
rotatable energy degrading foil, two beam transformers and a faraday cup. The quadru-
pole triplet in this line is designed to produce an image of the adjustable slit in
VB6, at the slit and collecter in the end of the beam line beyond the bending magnet

for use in momentum analysis.

Diagnostic Techniques

The method used to measure the transverse emjttance of the beam is described by
N. Fewell and R. Witkover in a paper to be presented at this conference.8 Figure 2
shows the method used to mcasure momentum. The bending magnet power supply reference
voltage was remotely adjusted to sweep the magnet current and hence moved the beam across
the 0,020-in, wide slit in front of the current collector, the signal from which was
amplified and fed to the Y plates of a storage oscilloscope in the contrel room. A
precision shunt in the magnet power supply provided, with suitable d¢ biasing and ampli-
fication, the signal to the X plates of this osciiloscope. Either the ion source
trigper pulse or a beam current pulse from a beam transformer was used to trigger a
pulse generater with adjustable gain, pulse delay and pulse width which provided the Z
axis modulation for the oscillescope. Thus the sample width and time during the beam
pulse could be selected. Tank rf levels were measured in a slide-back arrangement
using a Hewlett-Packard typc HP5082-2800 hot carrier diode with up to 30 V of dc bias.

The rf level wvalues quoted in this report are helipot settings for the bias voltage and

are directly proporticnal to cavity field. The field was measured with the cavity in
the beam loaded condition, Phase shifts between each buncher and the tank were mea-
sured using a Hewlett-Packard 105144 double-balanced mixer. A signal from a buncher
and the tank were each fed into cne arm of the mixer, As the tank phase was changed,
the mixer balance was restored by adjusting a calibrated phase shifter connected in
series with the tank input arm of the mixer. The signal level without beam loading
was used as a null indicator so that there was correspondence of actual phase shifter
readings at different beam current levels. Typical phase and amplitude signals are

given in reference 9.

Computational Methods

Two basic computer programs were used to provide the theoretical data for compari-
son with the measurements. The LONMO program described by A. Bentonlo was used for
data taken at low beam currents and without bunchers, whereas the six-dimensional pro-
gram with space charge described by R. Chasman in reference 11 was used for comparison

at high current levels.
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Beam Measurements

Adjustment of the Preinjection Energy and Tank No. 1 RF Level

Plots of Tank No. L transparency (i.e., ratio of output to input beam currents)
were made for a number of rf field levels in tank No. 1. These plots were compared
with data computed using the LONMO program and this comparison between the two sets of
data allowed an estimate of the correct preinjector voltage setting and tank No. 1 rf

level setting to be made (see Fig. 3).

Further checks of the tank rf level were made by comparing computed spectra with
measured spectra at three different injection energies of 730, 750 and 770 kev (Figs.
4, 5 and 6). It can be seen that these three sets of data are consistent with a tank rf
level setting of ~ 545 for the design value, Furthermore, the general change of shape
of the measured spectra with increasing rf field levels can be seen to be following the
pattern of the computed spectra. The definition of the measured data was estimated to
be ~ 70 keV, whereas the definition of the computed data was ~ 40 keV. This difference
in definition gives a broadening of the measured spectra {and a smoothing of the peaks)
compared with the computed spectra. Typical shifts in mean 10-MeV energy due tc the
20-keV difference in injection energy were ~ 40 keV, the direction depending on the
number of phase oscillations executed by the protons at that particular rf level.
Collimators in the LEBT system were used to produce a low current parallel beam for this

set of measurements.

Optimization of Bunchers

Having established preinjector and tank No. 1 operating levels, buncher No. 2 was
turned on and phased with respect to tank No, 1 by observing 10-MeV current as a func-
tion of buncher/tank phase for the design rf level and a Cockecroft-Walton voltage of
770 kV, These data, plotted in Fig. 7, gave an optimized operating level of 24 kV for
buncher No. 2 with a buncher/tank phase setting of 100 degrees on the arbitrary scale
used. Buncher No. 2 was set at the above voltage and average 10-MeV momentum measured
as a function of buncher/tank phase for a number of rf levels. The resulting data are
compared in Fig. 8 with data computed using the LONMO program without space charge.

It can be seen that there is reasonably good agreement between this oversimplified
theory and practice and that the rf level reading of 545 is the indicated design value.
The plots do not pass through a single point due to the method used to measure the
buncher/tank phase which does not take account of the phase shift due to beam loading.
Buncher No. 1 was then turned on and an operational voltage level determined by running
a series of buncher No. 1/buncher No. 2 phase runs for different buncher No. 1 and
buncher No. 2 voltage levels and optimizing for maximum beam current. The detailed
data for each run were not plotted but settings of both buncher voltages were determined
as 18.5 kV for buncher No. 1 and 25 kV for buncher No, 2, A beam current plot as a
function of bunchers/tank phase for three tank rf levels is also plotted in Fig. 9

where the maximum recorded beam current was 210 mA, In Fig. 10 the spectra correspond-
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ing to this data are shown together with a theoretical mean energy shift plot calcu-
lated using the LONMO program. Table I lists all machine operating conditions for the
210-mA beam, To complete the energy data, spectra were taken at different times during
a 140 _sec beam pulse in order to look at the during-the-pulise stability of the beam.
Both rf phase and amplitude control loops were closed when these data were taken. The

results as seen in Fig. 11 show little change of spectra during the pulse.

TABLE 1

Operating Valves for 210 mA, 10 MeV Beam Current Preinjector and Ion Source

Cockcroft-Walton Voltage = 780 kV.
Bouncer High Voltage = 30 kV, Current = 4.4 wmA.
780 keV Beam Current (BTl) = 400 mA, Beam Pulse Length - 30 psec.

Low Energy Beam Transport System

Triplet No. 1; - Quadrupoles Ql and Q3 = 2394, Quadrupole Q2 = 193A.
Triplet No. - Quadrupoles Q4 and Q6 = 100A, Quadrupole Q5 = 133A.
Triplet No. - Quadrupoles Q7 and Q9 = 187A, Quadrupole Q8 = 183A,

Triplet No. - Quadrupoles Q10 and Q12 = 101A, Quadrupole Ql1 = 176A.

23
3
b
Triplet No. 5; - Quadrupeles Q13 and Ql5 1574, Quadrupole Ql4 = 1344,
6;
7;
8;

Triplet No. - Quadrupoles Ql6 and QL8 1684, Quadrupcle Q17 = L1544,
1774, Quadrupcle Q20 = 1744,
214A, Quadrupole Q23 = 2244,
Buncher No. 1 Voltage = 18.5 kV: Buncher No, 2 Voltage = 25 kV, Bunchers in Phase,

BTl = 400 mA; BTZ = 400 mA; BT3 = 430 mA; BT4 = 400 mA; BTS5 = 275 mA; BTé = 280 mA.

Triplet No. - Quadrupoles Q19 and Q21

"

Triplet No. - Quadrupcles QZ2Z and Q24

Tank No. 1

RF Reference Potentiometer = 560 = 1.025 X Design Value.

Quadrupoles Q1 - 1 93A; Q1 - 2 = 1744A; QL - 3 and Q1 - 4 = 201A:

2014; QL - 7 and Q1 - 8 = 201A; QL - 9 and Ql - 10 = 147A;

Ql - 11 and Ql - 12 = 1564A; QL - 13 and QI - 14 = 156A; Ql - 14 and Ql - 16 = 1344;
QL - 17 and Q1 - 18 = 162A; Q1 - 19 and Q1 - 20 = 2124; Ql - 21 and Q1 - 22 = 1994;
Ql - 23 and Ql - 24 = 202A; Q1 - 25 and Q1 - 26 = 207A; Q1 - 27 and Ql - 28 = 1974,
Ql - 29 and Q1 - 30 = 1994; Ql - 31 and Q1 - 32 = 193A; Q1 - 33 and Ql - 34 = 2014;
Ql - 35 and Q1 - 36 = 2084; QI - 37 and Q1 - 38 = 120A; Ql - 39 and Ql - 40 = 125A;
Ql - 41 and Q1 - 42 = 109A; Ql - 43 and Q1 - 44 = 1064A; Ql - 45 and Q1 - 46 = 127A;
Ql - 47 and Q1 - 48 = 141A; QL - 49 and Q1 - 50 = 161A; QL - 51 and Ql - 52 = 1494,
Ql - 53 and Q1 - 54 = 163A; Q1 - 55 and Ql - 56 = 81A; Ql - 57 off Q2 - 1 = 1464,

Ql - 5and ¢ 1 - 6
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Field Gradient Values for Quadrupoles

Triplet No. 1; 1.74 G/em/A for lengths 14.4 cm outer and 23.4 cm inner.
Triplets No. 2 - 7; 3.10 G/cm/A for lengths 12.1 c¢m outeir and 20.8 cm inner.
Triplet No. 8; 6.67 G/cm/A for lengths 6.4 cm outer and 10.]1 cm inner.

Ql - 1 = 4,01 kG/em; QL - 2 = 7,24 kG/em; Ql - 3 to Q1 - 8
QL - 9 and Q1 - 10 = 6,21 kG/em; QL - 11 to Q1 - 14
QL - 15 and Ql - 16 = 5,97 kG/cm; QL-17 and Q1 - 18
Ql 19 to Q2 - 1 = 22.7 G/cm/A.

i}

6 ~ 21 kG/cm;
6.55 kG/cm;
6.78 kG/cm;

It

Quadrupole Lengths

Ql -1 toQl -8 =2.5 cem; QL - 9 to Q1 - 18 = 3,17 cm;
Ql - 19 to Ql - 36 and QI - 57 and Q2 - 1 = 4.44 em; Ql - 37 to QL - 56 = 6.98 cm.

Transverse Beam Properties

Emittance measurements were performed in LEBT at the output of the preinjector

(VBLl), in front of the linac (VB53), and after the 10-MeV cavity (VB6&).

Emittance Measurements in LEBT. Figure 12 shows a typical emittance observed in

VBl at the output of the preinjecter from a beam whose source characteristics are sum-
marized in Table II, The horizontal and vertical resolutions in this picture are

0.5 mm and 2 mrad respectively., As can be easily ascertained, two different beams are
visible. Both of these beams consist of H+ ions since the H; molecular content from
the source is discriminated against by the threshold level of the emittance device.
The intensity of the brecad and divergent proton beam is very low as can alsc be seen
from the results of the beam profile measurements, which are shown in the lower part

of Fig., 12. The appearance of the two proton beams can be explained assuming a partic-

ular shape of the plasma boundary in the large expansion cap.

Figures 14 and 15 show results of measurements in VB5 situated close to the linac
entrance. At this point, the molecular component of the beam has already been dis-
persed in the long transpert channel preceding it. The proton beam here is converging
into the small aperture of the linac. The quadrupoles of the first and secend drift
tubes are cperated below the values corresponding to the 'gradient law'" of the linac
so that a proper match can be made at the third drift tube to the periodic + - + -
focusing structure. This avoids excessive gradients in the triplet between buncher

No. 2 and the tank.

Typical emittances in two phase planes, each representing more than 8§0% of the
proton beam, are shown in Fig. 15. The horizontal and vertical resolutions in these

pictures are 0.5 mm and 2.5 mrad respectively.

Though only few emittance measurements were made directly after the preinjector,
i.e., in VBl, there is an indication that the emittance at this peint i1s about 307

smaller than those measured at the entrance of the linac, This growth in phase space
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area seems to be independent of whether the bunchers were energized or not,

Emittances for different proton currents are shown in Fig. l4. These were ob-
tained from measurements in which the LEBT quadrupoles were adjusted for maximum trans-

mission through the transport system,

Emittance Measurements After 10-MeV Linac Section. The 10-MeV emittance measure-
ments were performed in VB6 at a distance of 1.75 m away from the linac tank. The
gradients in the last three quadrupoles of the tank were lowered from the design values

in order to minimize beam losses in the drift section between the linac and VB6.

A typical emittance pattern of the beam in VB6 is shown together with its profile

in Fig. 16, The horizontal and vertical resclutions are 0.5 mm and 2 mrad respectively,
Values of 10-MeV emittances for different proton currents are shown in Fig, 17.

Figure 18 shows phase space areas in the y-y' plane for different percentages of
the beam before as well as after the 10-MeV linac secticn. These emittances were re-
corded during a run in which a single buncher (No. 2) was used, resulting in 55% tank
transmission. Input and output currents were 220 mA and 120 mA respectively. Also
shown for comparison are results of measurements with neither buncher energized, The
somewhat smaller emittances that were observed with the bunchers de-energized could
easily be explained by a reduction of space charge effects in the beginning of the

linac under these conditions.

Transverse beam properties of a 200-mA linac output beam are shown in Fig. 19
together with the corresponding input conditions, This beam current was achieved
with both bunchers in operation, resulting in a 72% linac capture efficiency. The
phase space areas at the linac entrance are identical in both planes. However, at the
output the emittance area in the x-x' plane is considerably smaller than that in the
y—y' plane. The ratios or ncrmalized output to input emittances for different per-

centages of the beam are shown in Fig. 20.

Emittance areas before and after the 10-MeV tank are shown in Fig. 13 as a func-
tion of time during the 140 usec beam pulse. The phase space area seems to be inde-
pendent of time except during the first 20 psec which is the rise time of the beam

pulse.

Numerical Calculations. Data from measurements with the 200-mA linac output

current were used for computer calculations in order to enable comparison of measured

and calculated transverse beam properties at high current levels.

The input distributions in transverse phase space, used in the calculations, were
similar to the emittances which were measured in VB5, Beam displacements in the x’
and vy  coordinates which had been observed during the emittance measurements were
neglected because these initial offsets in two phase planes might have been required
to compensate for unknown linac misalignments in order to get maximum current trans-

mission, Since no corresponding emittances were measured in front of the bunchers, the
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input distribution in longitudinal phase space had to be obtained from a computer run
which simulated the beam through the two bunchers (using measured buncher parameters)
up to the linac entrance. The transverse beam properties that were used in this run
were not derived from any measurements, but were taken from other computer rums that

had been made earlier for the design of the transport system.

The beam was simulated through the linac up to VB6 using measured values for the
input current, injection energy, rf level and linac quadrupcle settings. A capture
efficiency of 68% was obtained compared to the value of 72% which was observed experi-
mentally. Figure 21 shows the phase space projections of the computer-simulated beam
at the center of drift tube 3 where the beam should have been matched tc the acceptance
of the linac. The superimposed ellipses, also shown in this figure, are the contours
in two phase planes of a properly matched beam taking intco account measured values of
emittances, current, rf level and gquadrupole gradients in the tank. One can easily
see from Fig., 21 that proper matching conditions were not achieved by simply adiusting
the quadrupcles in LEBT and the first two drift tubes of the tank for maximum current

transmission through the linac.

Figure 22 shows the phase space projections of the simulated beam at VB6 together
with the contours of the emittances which were measured at this point for 92% of the
beam., Reasonable agreement was obtained between measured and computed emittances as

can be easily ascertained from the figure,

Ratics of normalized output te input rms emittances were also obtained from the
computaticns. These were roughly equal in the two phase planes and showed phase space
dilution by factors of 2 to 3 for different percentages of the beam, which is not in-
consistent with the experimentally obtained values for emittance growth (see Fig. 20).

It should be pointed cut, that for the same basic¢ beam and machine parameters,
earlier numerical calculations of space charge effects in bright linac beams 12,13
predicted a muich smaller emittance growth than was both measured and calculated in this
work. The cause for the apparent discrepancy may very well be the absence of proper
matching conditions at the entrance of the linac as was demonstrated in Fig. 21. Re-
sults of earlier computations12 emphasized the importance of well-matched beams for
minimum emittance growth. One can therefore hope that by an improved matching proce-
dure, better beam quality will eventually be achieved. More complete measurements and

calculations are needed for better quantitative understanding.
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TABLE IT
CHARACTERISTICS OF THE SOURCE

FILAMENT CURRENT 30A
ANODE VOLTAGE 250V
MAGNET (turns 500) |.5A
DISCHARGE CURRENT 35A
PULSE LENGTH 120 usec
PRESSURE ~lmm
BEAM CURRENT 3T70A
PROTRON PERCENTAGE >80%
NORMALIZED PHASE SPACE AREA

(3¥A) |.4cm-mrad

GEOMETRY OF THE EXPANSION CUP
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AN EMITTANCE AND DENSITY
DISTRIBUTION FOR A 300 mA
BEAM MEASURED DIRECTLY AFTER
THE 'PREINJECTOR AT 760 keV.
TOTAL EMITTANCE AREA IS 34cm-
mrad (NORMALIZED 1.36) FOR 90%
OF THE BEAM.

Fig.12
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Fig.l4 EMITTANCES FOR OPTIMIZED BEAM CURRENTS
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TYPICAL EMITTANCE IN THE X-X'AND Y-Y'PHASE
PLANES FOR NEARLY IDEAL MATCHED BEAMS.
THIS EXAMPLE IS A 240 mA INJECTED PROTON
BEAM RESULTING IN A [40mA LINAC OUTPUT.

Fig.15

TYPICAL EMITTANCE PATTERN FOR
BOTH PHASE PLANES AFTER ACC-
ELERATION AT I0MeV (140mA).

Fig. 16
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Fig.20 EMITTANCE GROWTH IN THE FIRST TANK
FORA 200mA BEAM.
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Fig. 21 Calculated emittances at center of drift tube 3 in linac.
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DISCUSSION
C. D. Curtis (NAL): Could you give a number for the energy spread?

K. Batchelor (BNL): At 200 mA, there is 500 keV full -width, half-height energy

spread. This spread is essentially independent of beam current.
C. D. Curtis: We found the same behavior as a function of beam current.

E. Regenstreif (Rennes): Why is the emittance growth larger in y than in x?

K. Batchelor: That is not clear. We were never matching properly from the pre-

injector, which is probably one of the causes. But the matching in x was worse than

that in y.
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