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ABSTRACT

The modes of oscillation of a uniform one-dimensional beam have been derived and
studied by Sacherer and Smith. The present work is an extension of their work to two
dimensions, using a matched Kapchinsky Vladimirsky beam as the unperturbed configura-
tion. The method censists of cobtaining two coupled integral equations in the per-
turbed phase space distribution and in the electric field. Sclutions of these equa-
tions for different modes cof oscillation are obtained, and the freguency spectrum of
these modes is presented as a function of space charge intensity. It is shown that
these modes correspond to surface distortions of the KV ellipsoidal surface in b-

dimensional phase space. The bearing of these results on space charge limits in
linear and ecircular accelerators is discussed.

I. Introduction

The work of Kapchinsky and Vladimirskyl (KV) addressed itself to the behavior of
a two-dimensicnal beam’under linear external restoring forces,whose distribution in
(four-dimensional) phase space was on the surface of a hyperelliipsoid. For this dis-
tribution the space charge forces are linear and the densities in the x-y, x-x', y-y',
x'-y' projected spaces are uniform within an elliptical boundary. Their analysis led
to a treatment of the envelope oscillaticns of such a beam and in partiecular to a
study of the "breathing” and "quadrupole” modes of oscillation of the beam boundary.

It is clear that these two modes of oscillation are not the only ones possible.
In particular, there is a coherent mode in which the beam oscillates as a rigid ellipse
at a frequency corresponding to the external restoring force, These are but a few of
the members of what should be a doubly infinite spectrum of modes. An understanding
of these modes is important in predicting the response of the beam to a non-linear
perturbing influence at an arbltrary frequency.

This problem has been studied in great detail by Sacherer2 and Smith3 for a one
dmensional beam of uniform charge density., They obtain the eigen-modes of oscilla-
ticn and their eigen-frequencies, and discuss the implications of external perturbing
forces.

In the present paper we shall obtain corresponding results for the elgen-modes
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and eigen-frequencies of a two-dimensional KV beam. For simplicity we shall consider
the non-relativistic case, although a relativistic treatment requires only minor modi-
fications,

TI. Tormulation of the Linearized Equaticns

In the absence of collisions the equation satisfied by the distribution

f(x,y,u,v,t) is

F @
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where Fx and Fy are the components of the total force. We shall consider perturbations
from the stationary XV diztribution fo, with the fields now being made up of the ex-

ternal field, the space chargz field corresponding to the stationary distribution, and

deviations therefrom, Specifically
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where UO is the ccherent cseillation frequency,
&

2 el ne”

w©=——5 =0 (is)
P EWEaEmV 2.

-
is the "plasma" frequency (n is the particle density in the beam), and E is the per-
turbed space charge field satisfying
- 1
Vel = E ffdudvfl. (5)

The linearized equation for fl is
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where
W= o, (1)
o D

-
Fguaticns (5) and (6) are the homogeneous {in fl’ ) coupled integre-differential
equations which must be solved. To do this, we assume {and remove) the factor exp

>
{-iwt) in both fl and E , and recomize that the owverator ocn the left side of (6) cor—

responds to a known (sinusoidal) orbit, in which case one can write

(-iw + u-%; + v %;—— vox %ﬁ - vgyA%;)fl = Q(x,y.,u,v) (8)
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oo iA
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Here
x' = x cos § - = sin s
v
t — v :
y' =y cos s - — sin s
v
(10)
u'* = ucos g + Vx sin s
v' = v cog 2 + vy sin s
A= w/v {11)

and the path of integration is properly deformed at s==< to obtain convergence. A fur-
ther sinplification comes from the fact that fo is a function of the single variable

2
R~ giver by

in which case
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Since we are dealing with non-relativistiec conditicons, particularly for the first
=
order oscillations, ¥ is derivable from the scalar potential Gix,y) with

P= - (15)

in irtegration of (14) vy parts finally leads to
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o2 2
where we have been able Lo extract fo {F”) from under the integrasl since R~ iz un-

alfected by the "rotatinn™ in (10).

2
A note of caution is appropriate here. The term f_ (R") represents the highly
singular derivative of a delta function, and our mathematical manipulations must be
done with care. Furthermore, the assumption of exp(-iwt) dependence does not permit

moverent of the beanm beoundary. BRather we must consider charge building up on the

{fixaed) surface of the hyper-ellipscid and will at a later point translate this to
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equivalent motion of the surface by proper consideration of the currents associated

with fl.

ITI. Soluticn of the Linesrized Equation

Tt is difficult to derive the scolutions directliy from (16) and (17). Instead
we have observed that polynomial solutions for G can be constructed and have gener-
alized these tc the statement that the solution can be written (in polar coordinates)

a5

mrcos mb 2
= Fo{-3 1;
G{r,8) = r {sin m6}2 l( 3, m¥j, mtl; ro) (18)
where 3 = 0,1,2, ..., m= 0,1,7,... {not ineluding j=m=0), and where the radius r is

in units of the unperturted radius a. The freguency is given by the eguation

" .
N _rdy sy 2
f ds el)\S cos™s_F (-3, m+j, m+l; cos2s) = - %—-& + {emtjiv (19)
21 ik jo ,
o L (m+3-1)'wp

Several steps have becn taken o demonstrate the correctness of these assertions:

1) The usual series expansion for the hypergeometric function EFI has been used

in (16) to permit term by term integration. In the process one uses theorems like

1 _ {A+B+C+D) !
(A+k )T B~k )1 (C+k) 1{D—k)!  (A+B)1{C+D) ! (A+D)1{B+C)!

(20)

2) The value of £, thus obtained is integrated to confirm the validity of (17
subject to (19).

3} The current is calculated from f and the surface charge density is thus ob-

1!
tained. It is then confirmed that the discontinuity in VG appropriate fo the surfanc

. . } -m +imb | , }
charge is consistent with G = r e~ in the exterior region.

One further note is of interest at this point. The full distribution will now

be of the form

al 1
£+ f = K[ﬁ(R2 - a") + Eelx,y,u,v)8 (R2 - ag)]

1 {21)

where € is an arbitrarily small constant, and the form of g is derived from (16) and
(18). One can write an slternate form of (21)

s —
£+ T = KS(R° - a° + eglx,y,u,v)) (

[

2)
which shows that the eigen-modes take the form of disteortions of the surface distri-
bution in the four-dimensional phase space.

IV. Particular Solutions

Several special cases are of interest and are easily obtained from {18) and (19).
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A =0, m=1
¢G=x , E =-1 , E =0 ‘\
x ¥
or / {23)
¢G=y , E . =0 , E =-1
2 2.2 2 2 2 s
Yo T o1V TV T = (2h)

Clearly this case corresponds to a coherent oscillation at the proper frequency. The

>
charge density (eV+XL) is obviously unchanged,

B. i=0, m=2

This case corresponds to quadrupole beam oscillations; the frequency is the same as

that derived from envelope considerations. The charge density is again unchanged.

C. =1, m= 0
= 2 = T = r o= o)
GC=1-r . Ex = 2x hy =2y , VE=1l {(27)
2 . 2 2 2 2,2 2
W= AlO Vo o= byt o+ Ewp = h\)o - 2wp (28)

This case corresponds to the usual "breathing"” cscillation; the frequency is the =same
as that derived from envelope considerations. As expected, in this case the perturb-
ing charge density is constant corresponding to a uniform beam of oseillating radius.

D. j=2,m=0

G=1- hre + 3rh » B = _1ox> - 36xy2 + 8x
3 2 > ) (29)
Ey=—12y - 3xy + B , V+E =16{ 1-3r)
> 5 cw g o W
- - = -~ o !
oy = W07 - 16) = =B (3, "+ 2) L
v \ (30)
i
= I~ 23
w 2 - A QVL = 10u° + W e //é6vh + 2hw °v2 + W &
20 20 e & D J
where we have chosen the negative sign for the sguare roét in order to have w20 = 2V
when w_ = 0. This mode of oscillation corresponds to a breathing mode with non-uniform

=
density. In fact, there is a radial node at r~ = 2/3, and, as the beam expands, the
density increases for r2 < 2/3 at the same time as it decreases for r? > 2/3.

For small prJva one finds
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Comparison with (28) indicates that the shift in frequency for the (2,0) mode is 2.5

times that for the (1,0) mode.

E. Other 1, m
In general one finds other modes with frequencies given for zmall wpg/vg by
wjmg z \)2 + oajmwp2 = \)02 + (ozjm-l)cup2 , m odd
{32)
me2 x h(ve + ajmmpg) = h(v02 + (aJm~l)mP2); m even
Some of the values of ajm are given in Table T. /
Table I
aJm vs J and m
Nj 0 1 2
0 — 1/2 -1/4
1 1 -1/h 0
2 1/4 0 -5/6k
3 1/4 -1/8 1/6h
L 1/8 -1/32 -1/32
5 1/8 -5/64 1/€k
V. Space Charge Limits in Synchrotrcns
The simplistic calculation for the space charge limit in a synchrotron {small
wpg/vg) starts with (7) written in the form
v === -mp2/2\)0 (333
and requires
vrot 2 YoV rot (3h)

< &
| av| or W " ,
corresponding to the maximum distance tco either a half-integral or integral stop band.

Here vr is the rotation frequency in the circular accelerator. If one takes into

ot

account other modes, one finds for odd m that |AU| < vrot/h corresponds to

2 vovrot
UJP <W (35)

and for even m, that [Av\ < vrot/g corresponds to exactly the same equation., For the

breathing mode (1,0) cne has

2
T SV Vo (36)

- L
in agreement with the increased limit found by Lloyd Smith ‘based on the analysis of
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the envelope oscillations. However, the most restrictive limit is the one having the

lowest {largest negative) value of « according to Table I there are two such cases:

m’?
(2,0) ana (1,1), for which

wp2 <-§-\)v . (37)

o rot
We therefore find that there are two modes of beam oscillation which imply that the
space charge limit is lgwer (by 20%) than that predicted by the simple result in (34).
It might be wise to point out at this time that rezl beams do not in general have
a precise KV distribution. In fact, the higher modes involve internal density varia-
tions, and are probably more sensitive fto the details of the distribution than is the
breathing mode. TFor this reason the limit in (37) may be somewhat unrealistic. Actual

orbit caleulaticns are required to see what the time limit is.

VI. ©Space Charge Limits in Linear Accelerators

The simplistic calculation for the space charge limit in a linear accelerator
consists of the requirement that v2 be positive in (7), corresponding to stable os-
eillations for all individual perticles. Such consideratlions do not take into account
questions of stablility which are the subject of a companion pa.per.5

One expects however, that an unstable condition for the KV beam would be re-
flected by an imaginary frequency for at least cne beam mode. Examination of the mode
frequencies indicates that almost all fregquencies are real in the range 0O f_wpg f_vog.

The cnly exception found thus far is for the (2,2) mode discussed in Section TIVD,

From (30), one finds that

2 2 16 »
> —
Yog 20 s Wy STV, -
3
w 2 < Q ;é-m 2 < w 2 < v 2.
20 * 17T o D 9]

Thus we expect that when the space charge intensity is sufficiently high, the KV
distribution will become unstable. The growth rate predicted by (30) is extremely

slow within the range of instability, reaching a maximum of —w012 = .023v02 when

u
w & = .97 v 2.

D o
In Figures 1 and 2 we have plotted wjmgfvog

vs wpg/vog for several of the inter-
esting modes.

VII. HNumerical Orbit Calculations

Orbit calculations have been performed for axially symmetric beams by R, Chasman
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and K, Crandall6 to test the predictions of this paper. In particular, the starting
distribution has been chosen to correspond with {22) for both the lowest breathing
mede (1,0} and the next lowest (breathing) mode (2,0). 1In the case of the (1,0} mode,
we find cscillations of the beam envelope which are in complete agreement with fre-
quency predicted in (28) for values of wpe between 0 and voz. For the (2,0) mode

we find oscillations of the beam envelope which are in excellent agreement with the
frequency predicted by (30) for values of wp2 between 0 and .85v02. For values of wpg
above .85v02 the oscillations are erratic and less clearly defined. We have also
searched for instability in the range 16/17 < mpgfuog < 1. Although the evidence is
not coneclusive because of inherent numerical limitations associated with a finite but
large number of particles undergoing a finite but large number of impulses, there is

& suggestion of instability of the KV distribution for these wvalues of wpg/voe. These
calculations are in the process of being improved; as yet we are unclear as to what is
the most stable distributicn in this range of wpgfvoe.

It may be well to point cut that the intensity limit imposed by mpe/voe < 16/17
does not differ in a practical sense from the limit wpg/voe < 1, Our concern instead
is that another distribution may be more stable. The KV distribution pushed to the
limit may then lead to deterioration of the quality of the beam as the limit is
approached.

VITT. Conclusions

We have derived the eigen-fregquencies and eigen-modes for a two dimensional KV
bteam. The space charge limit in both circular and linear accelerators appears to be
connected with the second azimuthally symmetric mode of beam oscillation, and is more
restrictive than the usual space charge limit considerations. Agreement with numer-
ical orbit calculations is good.

IX, Acknowledgement

The author would like to express his appreciation to Drs. Renate Chasman and
Kenneth Crandall for helpful discussions and for performing the numerical calculations
described in Section VII, In addition, he would like to acknowledge many fruitful
discussions with Drs. Lloyd Smith and Frank Sacherer,

References

#
Supperted in part by the Wational Science Foundation.

818



Proceedings of the 1970 Proton Linear Accelerator Conference, Batavia, Illinois, USA

]P. M. Kapchinsky and V, V, Vladimirsky, Proceedings of the 2nd Internaticnal Con-
ference on High Fnergy Accelerstors and Instrumentation, p. 274, CERN (1959).

3. J. Smcherer, UCRL Report-1845k, Oct. 30, 1968.

3Lloyd Smith, private communication.

Lloyd Smith, Proceedings of the hz-h— International Conference on High Energy Acceler-
ators, p. 897, Dubna (1963), ‘

5R. L. Gluckstern, R. Chasman and K. Crandall, Proceedings of the National Accelerstor
Laboratory Linear Accelerstor Conference, September 1G70.

Private communication. See also reference 5,

819



Proceedings of the 1970 Proton Linear Accelerator Conference, Batavia, Illinois, USA

(0,1

1.O

o) I I | I
0 2 4 ) .62 8 1.0
Wy /Y%

Fig. 1. Mode frequency vs beam intensity for various "odd" modes.
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Fig. 2. Mode frequency vs beam intensity for various "even' modes,
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DISCUSSION
(The discussion of this paper follows LCQO-063, "Stability of Phase Space
Distributions in Two Dimensional Beams' by R. L. Gluckstern, R. Chasman, and

K. Crandall.)
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