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Abstract 

The design of a beam transport sys
tem which will deliver a beam with a speci
fied emittance profile is frequently troubl
ed by lack of convergence of the beam 
transport calculation. A method is described 
which uses a thin lens approximation to find 
all solutions in the region of interest; 
these can then be used as approximate solu
tions for the more accurate thick lens 
calculation. 

A beam matching problem is equivalent 
to solving 4 non-linear equations in 4 
unknowns. If the thin lens approximation 
is used these equations are polynomials and 
the problem can be reduced to finding the 
intersections of two 8th order equations. 

Introduction 

The task of designing a beam trans
port system to deliver a beam with a 
specified emittance profile arises frequent
ly with accelerator beam lines. Elaborate 
computer programs have been written to 
follow beam through a proposed transport 
system; a subroutine to modify the trans
port system to improve the fit to some 
requirement can be included. The SLAC pro
gram TRANSPORT as described in SLAC-91 is 
a good example (1). This technique has its 
limitations, for unless the trial system 
is sUfficiently close to a solution the 
iterative process may not converge. In 
many cases no solution can be found, and in 
others only impractical solutions are found 
(quadrupole magnet strengths too large or 
component spacing too large or small). The 
existence of other solutions is uncertain 
and it is not apparent how to modify the 
system so that useful solutions will occur. 
This paper describes a technique for ob
taining a thin lens solution which can be 
used as a starting approximation in a thick 
lens program like TRANSPORT. 

Waist to Waist Matching 

A problem that arises frequently is 
that of matching from a double waist to 
double waist using quadrupole lenses. 
Four variables are needed to permit the 
required matching and the following dis
cussion treats four lenses in fixed posi
tions with variable strength; a similar 
calculation could be done using for example 
two lenses with variable strength and 
position. Four equations in 4 unknowns may 

be written down and these can be reduced 
to 2 equations in 2 unknowns containing 
polynomials up to the 8th power. These 
equations can be plotted and solutions 
will correspond to intersections. In 
cases where the curves do not intersect 
in a desired region it may be possible to 
adjust them so that they do by changing 
the lens spacing. 

The beam transformation matrices 
Rx, Ry are 2 x 2 matrices which change 
trajectory coordinates from Xi' Xi' to 
Xf , Xf ' and Yi , Yi ' to Yf ' Yf ' 

(X~) ( Rxll 
Xf Rx21 

Rx12) 
Rx22 

(:~) = (~~~ ~~~) (:~ 1 
If this transforms a beam with a double 
waist l//~xi' l//~yi to a double waist 
l//Yxf' l//yf where r is the Twiss beam 
ellipse parameter, R is of the form 

Rx (~'Y~fcose (l//YxfYxi) sine\ 

\-/YxfYxisin8 IYxf/YxicoS8 ) 

~= ( /YYi/YYfCOS~ (l//YYfYYi)Sin~\) 

\-/YyiYyfsin~ /Yyf/YyiCOS~ 

where the angles 8, ~ are arbitrary. 
This is equivalent to saying that the 
matrix elements must satisfy the 
relations 

Rxll 
Yxi 

Yxf 
Rx22 

1 
Rx12 YxfYxi 

Rx21 

Ryll 
Yyi 

Ry22 Yyf 

Ry12 
1 

YyfYyi 
Ry21 

If we write M yi/yf P -l/yiyf 

the relations become Rxll - MxRx22 

R -x12 P
x

R
x21 

Ryll - MyRY22 

Ry12 - P
y

R
Y21 

0 

0 

0 

0 

(1) 
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Matching with 4 Thin Lenses 

consider a system of four thin quad
rupole lenses in fixed positions 

d l d 2 da d 4 d 5 

A-----------------------------------------B 

where d. are distances 
~ 

F. are thi~ lenses with focal 
~ lengths -l/F. 

The transformation matrices from A to Bare 

R = 1"1 d 5 ) ( 1 0) (1 d 4 ) ( 0 0) (1 d 3 ') 
Y ~ 1 -F4 1 \0 1 -F3 1 \0 1 

x ( 1 0 ) (l d a ) ( 1 0) (l d l ') 
~-Fa 1 \0 1 -F I 1 'D 1 

Multiplying out, these become 

Rx12 

1 

+ F4 (d s ) 

+ F3 (d4 + d s ) 

+ F3 F4 (d4 ) (ds ) 

+ F 2 (d3 + d 4 + d s ) 

+ FaF4 (d3 + d 4 ) (d s ) 

+ F;) F 3 (d3 ) (d4 + d 5 ) 

+ F;)F3 F4 (d3 ) (d4 ) (d 5 ) 

+ F 1 (da + d 3 + d 4 + d 5 ) 

+ F 1 F 4 (da + d 3 + d 4 ) (d 5 ) 

+ F1F3 (d:a + d3 ) (d4 + d 5 ) 

+ F 1 F3 F 4 (dOl + d 3 ) (d4 ) (d 5 ) 

+ FIF:a (d2 ) (d3 + d 4 + d 5 ) 

+ FIF2F4 (d:a) (d3 + d4 ) (d 5 ) 

+ FIF:aF3 (d:a) (d3 ) (d4 + d 5 ) 

+ FIF2F3F4 (d;)) (d3 ) (d4 ) (d 5 ) 

d I + d 2 + d 3 + d 4 + d 5 

+ F4 (d I + d:a + d 3 + d4 ) (d 5 ) 

+ F3 (d I + d:a + d3 ) (d4 + d 5 ) 

+ F3 F4 (dI + d 2 + d 3 ) (d4 ) (d 5 ) 

+ Fa (d 1 + d 2 ) (d3 + d 4 + d 5 ) 

+ F2F4 (d 1 + d 2 ) (d3 + d4 ) (d 5 ) 

+ FaF3 (d l + d;)) (d3 ) (d4 + dd 

+ F;) F3 F 4 (d l + d;)) (d3 ) (d4 ) (d 5 ) 

+ FI (dl ) (d;) + d 3 + d 4 + d 5 ) 

+ FIF4 (d l ) (d;) + d 3 + d 4 ) (d 5 ) 

+ F I F3 (d l )(d2 + d 3 )(d4 + d 5 ) 

+ FIF3 F 4 (d
l

) (da + d3) (d4 ) (d 5 ) 

+ F IF;) (d l ) (d2 ) (d3 + d 4 + d 5 ) 

+ FIF2F4 (d l ) (d2 ) (d3 + d 4 ) (d 5 ) 

+ FIF;)F3 (d l ) (d;)) (d3 ) (d4 + d s ) 

+ FIF2F3 F4 (dl ) (d;)) (d3 ) (d4 ) (d 5 ) 

o 

+ F3 F4 (d4 ) 

+ Fa 

+ F 2 F 4 (d3 + d 4 ) 

+ F:a F3 (d3 ) 

+ F 2 F 3 F 4 (d3 ) (d4 ) 

+ F 1 F 4 (d2 + d 3 + d 4 ) 

+ FIF3(d:a + d3 ) 

+ F 1 F 3 F 4 (d2 + ds) (d4 ) 

+ FI F2 (d2 ) 

+ F 1 F 2 F 4 (d2 ) (d3 + d 4 ) 

+ FIFOl F3 (d2 ) (d3 ) 

+ F 1 Fa F 3 F 4 (d;)) (d3 ) (d4 ) 

1 

+ F4 (d I + d 2 + d 3 + d4 ) 

+ F 3 (d 1 + d 2 + d 3 ) 

+ F3 F 4 (d1 + d 2 + d3 ) (d4 ) 

+ F2 (d1 + d 2 ) 

+ F:a F 4 (dI + d 2 ) (d3 + d 4 ) 

+ F3F3 (d I + d 2 ) (d3 ) 

+ F 2 F 3 F 4 (d1 + d 2 ) (d3 ) (d4 ) 

+ FI (d I ) 

+ FIF4 (d I ) (d2 + d 3 + d 4 ) 

+ F 1 F 3 (d I ) (d:a + d3 ) 
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+ F 1 F 3 F 4 (dl ) (d;) + d3 ) (d4 ) 

+ FlF;) (d l ) (d;)) 

+ FIF;)F4(dl )(d;))(d3 + d4 ) 

+ Fl F;)F3 (d l ) (d;)) (d3 ) 

+ FlF;)F3F4 (d l ) (d;)) (d3 ) (d4 ) 

The R terms are similar with -F for F. In 
practice the rule for writing down these 
terms is obvious so it is not necessary to 
do the actual matrix mUltiplication. 

Analytical solution 

Equations (1) are 4 simultaneous 
equations in 4 unknowns F l , F;), F3 , F4 . 
A complete analytical solution is not feas
ible but they can be reduced to 2 equations 
in 2 unknowns F3 , F4 which can be presented 
graphically. A solution to eqn (1) must 
lie on both graphs (i.e. at an intersection) 
but all intersections need not be solutions. 
These superfluous intersections can easily 
be identified and rejected. 

write eqn (1) as 

alF l + a 2 0 

a 3 Fl + a 4 0 

aSFl + ae 0 
(2) 

a7 F l + as 0 

where al,a;) ••• as are functions of F;), F3 , 

F 4 • 

Eliminate Fl. 

The resulting equations are 

a 2 a3 - a l a 4 0 

a 4 as - a3 as 0 

o. 
The a's are linear in F2 so the above equ
ations can be written as 

b l F;)2 + b;)F2 + b 3 0 ( i) 

b 4 F/l + b s F2 + be 0 (ii) (3) 

b 7F22 + bBF" + be 0 ( iii) 

Write y for F;)2, x for F., and the condi tion 
which must be met for solutions to exist is 

b l b 2 b 3 

b 4 b s be 0 (4a) 

b 7 b B be i 
A second condition needed to ensure that 
y = x 2 is 

write B7 b;)b e - b 3b s 

BB b 3b 4 - blbe 

Be bIbs - b 2b 4 
and eqns 4 become 

b 7B7 + bBBa + be Be 0 

BB 
;) - B7 Be = o. ( 5) 

These equations can be expressed as poly
nomials in F3 each coefficient being a 
polynomial in F4 . Eqn (4a) contains 
powers up to the 6th and is of the form 

(C ll + C l 2 F 4 + 

(C;)l + C22 F4 + 

(C?l + C72 F4 + 

+ C l 7F4
S

) + 

+ C27F4
e

)F3 + 
6 6 

+ C77F4 )F3 o 
Eqn (4b) is similar, containing powers up 
to the 8th. 

The individual c, , are functions 
of the lens spacings d l lto d s and in 
principal all 130 of them could be 
written out. 

Eqns (4) cannot be solved analyti
cally but can be handled graphically. 
Graphs of values of F3 ,F4 which satisfy 
each equation are drawn and points common 
to both curves are solutions. F l , F2 
are found from 

F2 
Fl -a2/a l 

These values can then be tested in 
eqn (1) to reject extraneous solutions. 

Computer Evaluation 

The expressions which arise in the 
solutions contain a large number of terms 
and are most easily evaluated numerically 
by a computer. Subroutines have been 
written which build up 9 x 9 matrices 
representing the coefficients of F3 ,F4 in 
eqn 4 in terms of the transformation 
matrix R. 

The use of F as a lens strength 
rather than using focal length allow the 
region of interest to be written 

which can be scanned easily. Typically 
F = 0.2 corresponding to a focal length 

max 
greater than 5 cm. F4 is scanned in 100 
steps and at each step all values of F3 
in the range which gives zeros for each 
equation (5) are determined. They are 
printed on the line printer as a graph 
with 100 x 100 positions. Intersections 
are noted and the solutions are refined 
to the required accuracy. 
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Sample Problem 

A ---- B 

consider the waist to waist matching problem 
with the beam at A satisfying 

x 
max Ymax .9 cm 

x' = y' = 12.5 m radians, 
max max 

and the beam at B required to satisfy 

x = Ymax = .4 cm. 

The 

and 

max 
drift spaces are 

L j 50 cm 
L2 20.32 cm 
L3 25 cm 
L4 12.7 cm 
L5 10 cm 

magnet lengths are 

Q1 30.48 cm 
Q~ 30.48 cm 
Q3 12.7 cm 
Q4 12.7 cm 

TRANSPORT failed to find a solution 
using as a starting point, values which 
gave a beam at B with ~ax = Ymax = .5 cm. 

consider the corresponding thin lens 
problem 

FA 

A-----i-
d 1 (,. 

with d 1 

d;) 
d3 
d4 
d 5 

65.24 cm 
50.8 cm 
46.59 cm 
25.4 cm 
16.35 cm 

Graphs of eqns (4) are normally 
plotted together to determine intersections 
but for this presentation they are shown 
separately. 

Fig. 1 is I b I 
I 1 

o 
and Fig. 2 is Bs2 - B7Be = O. 

Note that the curves are unchanged in 
this problem if all Fi are replaced by -Fi 

because ~ax = Ymax at both A and B, but 
this symmetry is not a general property. 

The curves on figs. 1 & 2 intersect 
in 13 pairs of points, only 4 pairs of which 
satisfy eqn (1). The complete thin lens 
solution is 

Fl ±.0122, ±.0314, ±.0244, ±.0158 cm- 1 

F2 'I' .0278, 'I' .0313, 'I' .0281, '1'.0265 cm- 1 

F3 ±.0416, ±.0477 , ±.0421, ±.0387 cm- 1 

F4 'I' .0721, 'I' .0946, '1'.0287, 'I' .0372 cm- 1 

A thick lens solution can be obtained by 
using TRANSPORT to follow the solutions 
to successively thicker lenses. This 
yields the values 

Q1 ±.059, ±.183, :£.105, ±.085, kgauss/cm 
(30.48 cm) 

Q2 'I' .138, '1'.168, 'I' .142, 'f .138, kgauss/cm 
(30.48 cm) 

Q3 ±.492, ±.581, ±.465, ±.453, kgauss/cm 
(12.7 cm) 

Q4 'I' .805, '1'1.396, 'I' .332, 'I' .401, kgauss/cm 
(12.7 cm) 

General APplicability of the Method 

The thin lens approximation was 
studied to solve a particular problem 
but appears to be generally useful and can 
be modified to include a range of related 
matching problems. I found it a bit 
disappointing that the solutions corres
ponded to regions on the graph where the 
curves coincided for some distance, rather 
than to a sharp intersection but that is 
not fundamental and could probably be 
altered by the appropriate scale change. 

The advantage of this method is 
that an approximate solution is not 
required so all the solutions in the 
region of interest can be found. This may 
give alternative values for a known beam 
line, possibly with a superior feature. 
conversely the non-existence of a thin lens 
solution, while not guaranteeing that a 
thick lens solution does not exist, sugg
ests that a search would be futile and a 
modified configuration should be sought. 
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