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Summary 

Considerations of beam dynamics for heavy 
ions within the frame of linear approximation at 
very low velocities are carried out. Decrease of 
acceptance due to space-charge for axial and radi
al motion is estimated. The behavior of idealized 
axial and radial beam envelopes with respect to 
space-charge and linac parameters is studied. 

Necessity of Linear Theory 

Theories of accelerator beam dynamics have 
always benefitted advantageously from the estab
lishment of linear equations of motion. However, 
any linear approximation involves problems 
as soon as space-charge effects have to be consid
ered. Yet, under certain assumptions, linear 
equations may still be used. For example; special 
geometric shapes of a particle beam permit the 
application of the well-known Kapchinskij-Vla
dimirkskij (K-V) model l . Within this frame Reiser 
derived his formula for the maximum charge in a 
FODO channe1 2 . Adaptation to realistic char~e 
distributions has been performed by Sacherer and 
Lapostolle4 using an RMS formalism. Basically, all 
these theories have to be restricted to transverse 
motion, requiring axial dimensions of the beam to 
be assumed large compared to transverse ones. 
This postulation seems violated in many linacs, 
especially at initial velocities, and certainly 
for the case of low charge state heavy ions in a 
fusion linac, where the axial envelopes are com
parable to or smaller than the transverse ones. 
This paper discusses two models, deriving linear 
equations for the axial motion. 

Linear theory in the presence of space-charge 
seems effective for many reasons. The many-body 
problem may be treated within the convenient frame 
of a comprehensive envelope representation, as 
only linear transformations conserve the ellipse 
character. 1bis formalism collapses; however, as 
soon as at least one of the driving forces proves 
non-linear. The alternative is the use of long 
and expensive computational efforts. Validity and 
applicability of these models involve problems 
associated with the self-consistency of the theory. 

Linac Models 

For the first case, consider the K-V modell, 
but replace one of the transverse motion compo
nents by the axial one. In the linac, assume a 
uniformly charged cylindric beam with an elliptic 
cross-section as Fig. 1 demonstrates. Axes are 
ax' a

z
' respectively. The beam does not move 

y 

Fig. 1 Elliptic cylinder assigned to K-V model 

along the y-direction but is accelerated trans
versely in the z-direction. Acceleration is pro
vided by a plane wave, although it is understood 
that longitudinal plane electromagnetic waves do 
not exist. Dimensions should be regarded as 
infinite in the y-direction. With respect to 
Ref. 1, identical emittance areas in both phase 
space planes x-x, z-z yield equations for axial 
and radial synchronous particles, respectively: 

d 2 Z 3Q F 
+ ~(~ osin¢s 

z 0 ( 1 ) 
dt Z E -~ ;;za-) z = 

In V 
0 X Z 

d 2 x 3Q F 
-[~(~ E sin¢ + ~)-D]x=O (2a) 

dt Z m V 0 s ~ a a 
0 x z 

There is a certain degree of freedom in the choice 
of a proper charge Q, which has been taken advan
tage of by cutting out of the beam rod a rotational 
ellipsoid with axes ax, ax, a z , which fully con
tains Q, giving a relation for the uniform charge 
density p: 

p 
Q 

4/3na za x z 

Focusing is formally expressed by an elastic force 
Dx, where the elastic constant may be produced by 
an extended uniform axial magnetic field: 

o 

An essential difference from Reference 1 must be 
pointed out. References 1 and 2 employ identi
cal forces, disregarding the phase in the case of 
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quadrupole lenses. Consequently, a restriction to 
identical emittance areas certainly proves to be 
unimportant in the K-V case, whereas, this means a 
severe restriction in the present case, as axial 
and radial emittance areas usually are not equal. 

In Eqns. 1 and 2a form factors Fx and Fz were 
introduced, which are expressed as: 

F z a + a x z 
F 

X 
1 - F z 

for the charge distribution of Fig. 1. 

(3a) 

As a second model consider a uniformly charged 
ellipsoid with axes ax' ay ' a z as shown in Fig. 2. 
As with modell, this form yields linear equations. 

x 

~-....... z 

y 

Fig. 2 Rotational ellipsoid as 3-dimensional 
beam model 

Specifically, consider the case of rotational 
symmetry, ax ; ay ' admitting an identical axial 
equation (1), but a formally different radial 
equation S,5,?: 

- 0] x = 0 

and form factors 

V
2 1 1 +/f=V"T F In -/1'4?-) ,V (-

z ,;,-:vz-' 2 1-/f=V"T 

v 2 

F (yVZ::T -arctanlv 2 -1) 3 ,v z rvr=T 

F 
x 2 

F z 

(2b) 

a x 21 
a z 

a 
::'1 x 

a 
z 

(3b) 

In the general case of ax 1 ay the equations are 
still linear, but the form factors have to be cal
culated numerically with elliptic integrals. 

Sel f-Cons istency 

Beyond doubt the first model seems self-con
sistent, but an explanation should be inserted here. 
The space-charge field is assumed to be generated by 
the proper K-V particle distribution, covering the 
surface of a 4-dimensional ellipsoid, as will be 
shown later. Synchronous particles (z ; 0, Z ; 0) 
with respect to equations (2a), (2b) do not belong 
to these in general, but to some extent do not 
cause any disturbance of the external K-V field. 
This K-V distribution actually corresponds to the 
general equation: 

F x 
a 2 a ) - O]x 0 I 

x Z 

where a coupling term, w2Eozcos¢s/v2, is added for 
the non-synchronous K-V particles. In this inter
pretation equations (1) and (2a) together with (3a) 
are still valid. 

In Table 1, the course of analysis in Ref. 1 
is extended to the cases of one and three dimen
sions. After comparing all columns of Table 1, it 
is seen that the uniformity of charge distribution 
in real space remains intact only when two dimen
sions are considered. Both of the other cases are 
not consistent with uniform charge distribution in 
real space; consequently, equations (1), (2b) in 
combination with (3b) describing Model 2, turn out 
non-realistic. 

The following one-dimensional example shall 
illustrate this: for reasons of simplicitv, take 
the emittance ellipse in the two-dimensional phase 
space to be on its principal axes. Additionally, 
units are chosen such that this ellipse becomes the 
unit circle. Electrical charge is distributed 
uniformly on the circle arc and according to Fig. 
3a, the charge density projected on the x-axis 
appears non-uniform. This suggests a non-uniform 
charge distribution on the arc such that its pro
jection becomes uniform, as Fig. 3b indicates. 
Now, taking this as a synchrotron ellipse, and 
transporting it through the corresponding optical 
system, all points in phase space, including those 
carrying charge, are rotated by an angle )1, where 
)1 stands for the Flocquet exponent of the optical 
systemS ,9. Obviously the initially uniform charge 
density has turned out inhomogeneous after trans
port, as Fig. 3c illust rates. Thus>- it appears as 
illogical in the case of 3-dimensions as it does 
for l-dimension, to enforce uniformity of the 
charge dihtribution in real space, by laying on the 
surface of the corresponding 6-dimensional hyper
ellipsoid, an inhomogeneous charge distribution 
according to 
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a) 

Fi g. 3 a) 

b) c) 

Uniform surface charge density on 
phase space ellipse. Inhomogeneous 
charge distribution in real space 

n '\, 1 
x 
~2 

b) Inhomogeneous surface charge density 
on phase space ellipse. Uniform 
charge distribution in real space. 

c) Rotated phase space ellipse after 
transfer over optical period, angle 
w. Phase space and real space dis
tributions both inhomogeneous. 

Thus the 6-dimensional hyperellipsoid of Table 1 
is not capable of producing a 3-dimensional uniform 
charge distribution. Both models prove non-physi
cal. In one case, one trades conservation of 
uniformity for the sacrifice of a dimension, while 
in the other, uniformi ty must be abandoned because 
of the requirement for 3-dimensions. 

Computational Results 

TI1e computations presented in this paper took 
into account mainly model 2, in spite of the lack 
of self-consistency mentioned, because of the con
siderable deviations associated with the extra
ordinary factor 2 in (2a) due to the plane wave 
assumption. Effects of different form factors 
(3a) and (3b) cause less severe deviations. Fig. 
4 shows a maximum decline at ax = az with 0.5 (3a) 
compared to 0.33 (3b), whereas both form factors 
merge at ax « az and ax » az· 

As a linac (neglecting any practical realiza
tion at the moment) a chain of rf-resonators (helix, 
spiral, splitring, etc.) is favored. TI1e scheme is 
shown in Fig. 5. Focusing should be provided by 
superconducting coils wound on the resonator tanks. 

Data are summarized in Table 2. 

For the calculations, a computer program has 
been developed, which gives the axial and radial 
synchrotron acceptances of the first section 
using equations (1), (2b), (3b). Envelope r~dii 
required for the solutions of (1), (2b) are com
puted iteratively, where the chargeless case Q 0 
is taken as a zero approximation. Elements-

0,5 

o 

FORMOClOR Fz 
FOR K.v. MODEL 

Fig. 4 Form factors for K-V model and ellipsoid 

RF- RESONATORS 

~~. 
i~~~~~, 
Inn I 

M®@®® ®®®®~ ®®®®®®®®®® 
-..........-. SUPERCONDUCTING COILS~ 

-3~A ->- d ~.- 3~A - d +-- 3~A 

Fig. 5 Scheme of the linac considered 

Table 2 

Particle: 

Initial energy: 1 MeV 
Final energy: 23.4 MeV 
Constant voltage gain per section: 0.28 MV 
Linac frequency: 13.5 MHz 
Number of sections: 40 
Synchronous phase: 30 0 (45 0 ) 

Initial axial envelope: 30 0 

Section length: 3SA 
Drift length: 10 em 

of all beam transports form WKB transfer matrices 10 • 

A more detailed report on this computer program will 
soon be published. It should additionally be noted 
that the basic implied postulate of identical emit
tance areas 1 with respect to both motion components 
is not included in this paper. For that, a further 
iteration procedure is required, for which work has 
started. 

The program obviously admits similar computa
tions of Wideroe (Bj/2) and Alvarez (SA) structures. 

Figure 6 shows a typical slope of acceptances 
with bunch charge, where Q 10- 10 C corresponds to 
a particle current of 4.22 • 10 15 particles per 
second (duty factor 1). 
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ACCEPTANCE WITH SPACE CHARGE 
ACCEPTANCE WITHOUT SF¥>.CE CHARGE 

RADIAL 

0,5 

AXIAL 

-10 
Q.lO Cb 

Fig. 6 Decrease of acceptances with space charge. 
10-10 C ~ 4.22 • 1015 particles/so Radial 
envelope radius 1 cm. 

Defining "maximum" charge as the one which 
reduces the smaller of the two acceptances to 50% 
with respect to the charge less case, Fig. 7 indi
cates an extraordinary behavior, caused by the 
aperture dependence in the form factor (3b) of Fig. 
4. Here this maximum charge is shown versus the 
radial aperture indicating that restriction of 
maximum charge is due to axial losses at large 
apertures, independent of the focusing field. Im
provement with a stronger magnetic field is only 
seen at smaller apertures. This coupling effect 
of both motions, where coupling is exclusively 
caused by space charge effects, is more obvious in 
the next figure. As Fig. 8 indicates, charge and 
magnetic pressure, when sufficient Iv high, give 
rise to a squeezing effect to such an extent that 
the beam moves axially, where the pressure is less. 
Thus a tendency to incompressible behavior is ob
served, causing instabilities especially due to 
envelope coupling effects, as the magnetic field 
does not show up explicitly in the axial equation 
(1). With regard to the case with zero space
charge, Flocquet exponents range from Po = 30 0 at 
11 Tesla up to Po = 80 0 at 22 Tesla. 

Figure 9 shows an example of beam envelope in 
a long linac, data being given in Table 2. Here 
axial and radial beam envelopes are traced through 
40 sections. Due to a rather moderate acceleration 
field, the phase oscillation amplitudes are in
creasing in the first sections, damping being de
layed due to space-charge. Several pairs of en
velopes which were considered, give an explanation 
of the beam behavior, namely; a strong envelope 
coupling between axial and radial motions after 
starting together with a rather unfavorable de
velopment of the axial Flocquet exponent. Axial 
and radial amplitudes turn out similar. The 
electrical field together with a more advantageous 
synchronous phase is increased, but still damping 
of phase oscillations is essentially prevented by 

o 

20 

10 

16 T 
12T 

12T 

16T 

.----RADIAL RESTRICTION 

0,5 2 0Xrrax em 

Fig. 7 Typical aperture dependence of maximum 
charges at two magnetic focusing fields. 

V/c 
100 

50 

ACCEPTANCE WITH SPACE CHARGE 

ACCEPTANCE WITHOUT SPACE CHARGE 

Q 
~ 

10 

MAGNETIC 
FIELD o ~~,~<-r--'---r--'r-~---r--'---r-~---r---r--Ti~~ 

Fig. 8 

11 15 20 TESLA 

Squeezing effect of strong magnetic field 
on axial acceptance. Radial envelope 
radius 1 ern. 
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Fig. 9 Radial (above) and axial (below) envelope 
behavior at several bunch charges 

space-charge, as the dashed curves indicate. For 
a comparison of the two models, the dotted curve 
illustrates even a more unfavorable beam behavior 
in case of Modell. Doubling of rf at high 
space-charge should be handled with utmost care, 
since extrapolation of zero space-charge situa
tions seems dangerous. 

Conclusion 

In the future, an iteration routine for 
identical emittances will be included, as dictated 
by the K-V formalism. The extension to 3-dimen
sions will be pushed forward, and a fast sub
routine for numerical calculation of elliptic 
integrals will be installed. Investigations shall 
be extended to periodic linacs like Wideroe and 
Alvarez. Finally the model will be tested using 
data of existing proton linacs as well as other 
multiparticle programs. This might support an 
rms formalism for axial motion with regard to the 
model discussed in this paper. 
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