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Summary 

The beam dynamics equations are in general valid 
only for ideal situations, i.e. ideal machines and 
ideal beams. To deal with reality, certain assump
tions and procedures have to complement the theory so 
as to form with it a logical or "reasonably" logical 
entity. The beam dynamics approach used for the new 
CERN linac is reviewed and important points are under
lined. Computer calculations justified the procedure 
at the start of construction; comparison with meas
urements and machine performance should now evaluate 
the true "figure of merit" of the whole approach. 

Design Methods 

Beam optics problems can be approached in various 
ways, each approach being usually a combination of 
analytic and computer treatment. The analytic treat
ment gives an insight into the importance and inter
dependence of various machine and beam parameters, 
but to solve the equations, several simplifications 
have to be made. The computer treatment is more pre
cise and is usually divided in two parts; one where 
linearized optimization programs are used to determine 
the machine and matched beam parameters, the other 
where beam simulation programs are applied to check 
the validity of the established settings. 

The CERN beam optics treatment consisted of the 
following steps: 

1) beam model 
2) analytic considerations 
3) optimization programs 
4) simulation programs. 

These topics will be treated in some detail; 
in particular the analytic considerations, which are 
the basis for the subsequent computer treatments. 

Beam Model 

The beam is represented by a hyperellipsoid in either 
a four-dimensional phase space (unbunched beam) • 
or a six-dimensional one (bunched beam). The space
charge forces are computed from the projection of the 
beam density distribution in the two- or three-dimen
sional real space. It has been shown that for dis
tributions with ellipsoidal symmetry, the evolution 
of the r1lis beam envelope depends almost exclusive-
lyon the linearized part (least square method) of 

the self-forces l
• This important fact is extensively 

used in analytic calculations and linearized optimi
zation programs, where the real beam is replaced by 
an "equivalent" one, having the same rIDS values of 
coordinates but being of uniform distribution. 

Via rIDS coordinates, one can compute the matching 
parameters for beams with different density distri
butions; the results will be the more significant 
the more the density distribution approaches an ellip
soidal one (''well-behaved beams"). It should be noted 
that no direct indication is obtained about the evo
lution of the marginal beam envelope, which is only 

estimated from the rms 
density distribution. 

envelope and the real beam 

Analytic Considerations 

Analytic considerations are essential for choosing 
the basic parameters of the accelerator under space
charge conditions. It is convenient to analyse the 
betatron and synchrotron motion separately. 

Transverse Beam Dynamics 

The most useful equation to start with is the envelope 
equation, and it is sufficient for our purpose to ana
lyse only the mean "smooth" envelope. Assuming that 
this envelope is essentially the same, over a period, 
for both the transverse directions x and y, one can 
write 

E2 

x" + Rx - x3 

kI o , 
x 

where x, K, E, I, k represent the smooth beam enve
lope, the mean outer focusing, the equivalent beam 
emittance, the beam current, and the space-charge fac
tor, respectively. The condition for a matched beam 
is x" = 0 and the mean focusing per period must satis
fy the expression 

- e ( x2 I) -2 K = -- 1 + k -- - = ~ (1 + at) 
5(4 E E S 

- I 
at = kS E ' 

where at is the transverse space-charge parameter, 
and nS and B are the smooth betatron frequency and 
amplitude function, respectively. If at » 1, the 
mean focusing is mainly "space charge determined": 

- I 
K~k-=2' 

x 
Some typical values of at in the new CERN linac are: 

at 

'V 20 (unbunched beam) LEBT > 10 (bunched beam) 

LINAC 3-5 

HEBT 2.5-5 

The reliability of computed settings usually drops 
with a; in the LEBT, for example, it is essential 
that tfie beam is "very well behaved" in order to· 
apply the computed settings. 

To keep 0t small (for a given I) becomes increasingly 
difficult for beams with a small emittance; one ends 
up with very narrow beams, requiring more focusing 
strength and possibly creating longitudinal space
charge problems. 

The situation in the linac can be analysed a bit fur
ther: the constants of all linearized forces in the 
smooth approximation satisfy the expression 

-2 _ -2 -2 -2 
~S - ~Q - ~RF - ~SC ' 

with ~Q' ~, ~SC being the mean force constants of 
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the quadrupole focusing, rf defocusing, and space
charge defocusing. Taking into account that the FD 
focusing in the linac is in fact a sequence of quadru
pole doublets 2

, one can write for the quadrupole 
gradient 

G 0: fiQ fi (1 + fi2 /fi2 + a ) 1/2 
S RF St' 

Inserting in this expression figures of a "nominal" 
acceleration with the new linac (I = ISO mA), one 
obtains roughly 

G ~ ~S (1 + 1 + 3)V2 

The increase of quadrupole gradients in the linac 
due to space -charge is 

G
G = (. ~Q J1

/

2 

(i)I/2 
'= 1. 6 

'0 l?Q - ~SC 
a figure confirmed also by more detailed computations 
(optimi:ation programs). It is interesting to note 
that the ratio of betatron frequencies of the beam 
center aml an average particle is 

2 . 

LongituJinal Beam Dynamics 

The hasic set of equat ions govenling the phase and 
energy Jifferenccs relative to the synchronous par
ticle is 

d w 
dt 6¢ = - 61'1 

mc2B~y3 

tt 61'1 = eETBrc[cos (¢s +6¢) - cos ¢s - o£!sin ¢s!M]. 

The meaning of the symbols is the usual one, 0.2. being 
the 10ngituJinal space charge parameter for the equiv-
alent beam: 

O£ '= 
2rE B cET!sin ¢ !6¢2 o r s 

with 6¢: smooth phase amplituJe, and r: smooth beam 
radius. It is assumed that 61'1 is small compared to 
the energy of the synchronous particle. 

To solve the set of differential equations some assump
tions are necessary, depending on the question one 
wishes to answer. 

Linearized equation (analysis of the evolution 
of small synchrotron oscillations with time): for 
6¢ « 1, one can linearize with respect to 6¢ and get 
the set of equations in the form: 

d 
dt M 

d 
dt 6W 

aCt) and bet) being slowly varying functions of t. 
At a given moment to' the motion (smooth) in the phase 
plane is given approximately by an ellipse with the 
axis ratio: 

[
_ 6W J 6W )1/2 = 6W 

MdM M 

This ratio varies Juring the acceleration as 

61'1 ex (Sry/I< (1 - o£) 1/2 
M 

The set of linearized first-order equations can be 
transformed into a second-order equation: 

d [ 2 3 d ] 21TeETSr lsin ¢s I 
CIt Sr y dt M + rnA (1 - ° £) M = 0 . 

As~umi~g o£ 
stltutlng, 

const and mUltiplying by S2 y 3 and sub
r 

2 3 d _ d 
Sr y CIt - au ' 

this equation can be solved for the independent vari
able u by the BKW method; returning to the variable 

t, the solution is written as: 
t 

M(t) C[S~y3 K(t)]-V4sin[J(K~t:)JV2 dt' + ¢o], 
o SrY 

where C is an integration constant and 
- 21TeETSr !sin ¢s! 
K(t) = rnA (1 - o£) 

One sees from the solution that the smooth synchro
tron frequency is given by 

_ [21TeET!Sin¢si ]% 
Ii = (1 - 0 ) 

s mB Ay3 £ 
r 

liSe is the frequency in the absence of the space-char~. 
During acceleration ~s varies as 

- -1/2 _3/2 1/2 
lis 0: Br Y (1 - o£) 

The amplitude of small phase oscillations is damped 
in the course of acceleration; for ET!sin ¢s! = const 
one has 

The parameter o£ is, in fact, not constant during 
acceleration, but varies (see its formula): 

-I +1/ 
o£ 0: Br II 2 for M = const 

Slh + I/: U\y) -3/4 a 0: II 2 for M 0: £ r 

In most cases, o£ increases along the linac. 

The described analysis, valid for 6¢ « 1, is usually 
also applied in optimization programs for bigger 6¢. 
Several precautions are, however, necessary when a 
parabolic potential function (linear motion) replaces 
the true one. 

Non-linearized adiabatic equation (analysis of 
synchrotron oscillations with large amplitudes): to 
solve the non-linear equations, one must assume adia
baticity (Bry = const); the second-order adiabatic 
equation is 

~ 6" -2 S s 2 [cos (¢ + 6¢) - cos ¢ ] 
de 'Y + lis 0 ! sin ¢ s ! - a £ M = 0 

and due to the assumption (d/dt)~~ = 0, one can ob-
tain the energy integral as: 0 

-it- [i 6¢2 + ~~o V(M)] 0, 
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with the potential function 

sin (¢s + ~¢) - ~¢ cos ¢s - sin ¢s 
V(~¢) = Isin ¢sl 

From V/(~¢) = [dV(~¢)/d6¢J 0, one gets one stability 
limit (unstable point) as 

The other stability limit can be obtained from 
V(~¢) - V(~¢I) = ° (in the easiest way by expanding 
this expresslon in a Taylor series): 

M2 = - I¢sl (1 - G Q) • 

The stability limits are not symmetric around the syn
chronous phase. To place more beam in the stable 
region, one injects off the synchronous phase, ¢s + ¢o' 
see Fig. 1. There are several points of view accord
ing to which ¢o can be chosen. If one decides to 
inject in the middle of the stable region, then the 
stability limits are a function of o£ and ¢o: 

Mj fj (0£, ¢o) ~¢2 = f2 (0£, 

satisfying 
fj + f2 

¢o --2--

The maximum allowable phase amplitude is 

M = 6¢j - ¢o 

¢o) 

The potential function V(M) now ha.s the form: 

sin (¢, + 6¢) - 6¢ cos ¢s 
\' (M) = ____ s----,-~__,_-r----

Isin ¢ I s 

and the integration constant C can be chosen so as to 
make the minimum of the potential function equal =ero. 
'TIle condition \" (M) = ° gives M j [maximum, \'1/ (M) < 
< OJ and Mo [minimum, \'I/(i\¢) > OJ, see Fig. 1. Pro
ceeding as before, one computes i\¢2 and Qo' 

The space-charge parameter ° £ has not yet heen fixed; 
it can be chosen in such a hay as to maximize the 
trapped beam: 

I = 2rE B crT cos ¢ I tg ¢ I ° 6¢2 max 0 r s s ' £ opt 

To obtain o£ opt it suffices to differentiate 

f(on) = (] -+ on = 0.425 
:c :c opt 

Taking this o£ opt and the typical settings of the new 
erR\ linac, one would get 

Imax = 75 m;\ 

which is the optimum filling of the stationary hucket. 
In fact, at injection into the CrR\J linac one has 

09 = 0.9 , 

and this means that the stahle region is drastically 
reduced and that a good part of the beam lies ini
tially outside of it. The beam starts to grow longi
tudinally, but the hucket length (in mm, not degrees) 
increases <X Rr , and quicker than the beam; after 

~(10-15) cells, the o£ has dropped sufficiently for 
the beam to be now fully in the new bucket. Figures 
2 and 3 show the initial potential V(~¢) and bucket 
of the CERN linac for two values of o£. Figure 4 
(simulation program result) shows the phase damping 
of beams with I = 0 and I = 150 rnA, respectively. In 
both cases, no particles are lost. The matching and 
machine parameters correspond to computed settings 
(optimization program results), and no attempt was 
made to annul the residual phase oscillations. The 
initially unstable beam gives rise to a large increase 
in the longitudinal emittance (~ 2 computed, > 5 meas
ured), but this does not adversely affect the accel
erator (booster) dov;TIstream of the linac. 

Linear Optimization Programs 

All parts of the linear accelerator complex have been 
designed by using linearized optimization programs. 
Programs treating the LEET and linac have been entire-

ly developed and written at CERN 3 and subsequently 
improved. They apply matrix formalism, linearized 
Lapostolle-Schnizer gap equations 4 

, and have the 
following special features: 

1. Space-charge forces are computed for uniformly 
filled, infinitely long cylinders (unbunched beam) or 
ellipsoids (bunched heam). In the hunching region, 
both models are used to account for the action of the 
suhsequently trapped as well as non-trapped particles3• 

2. The longitudinal beam emittance is formed by the 
non-linear energy modulation of the heam in the bunch
ing system. This is the only "non-linearity" con
tained in the optimi:ation programs; it is also re
sponsible for the transverse beam emittance growth in 
rf gaps. 

3. The linac (quasi-periodic structure) is treated 
as a periodic structure, when computing matching param-
eters; space-charge forces are included. 

4. The gap forces are linearized around an "average" 
heam radius reff (effective heam radius), which is re
lated to the envelope of the equivalent heam as 

reff =J~ 
r 5 

The divergence theorem holds. 

5. 'The synchronous particle is ahandoned as the rep-
resentative particle and replaced with particles 

lying on r eff in the transverse median plane of the 
heam bunch. These part i cles ha\'e to get the nominal 
acceleration. 

6. Emittance increase (non-linear effect) can he ar
tificially introduced in all phase planes. 

Linear programs having the above features also proved 
satisfactory for setting the running machine param' 
eters; in particular the 1 inac. Some corrections were 

necessary in the LEBT (quadrupole focusing, not bunch
ing) , where the high Clt value, intensity oscillations 
during the beam pulse l"grass"), and the presence of 
non-protons, made the situation more difficult to 
handle. 

Beam Simulation and EX]leriments 

In the linac, important quest ions concenli ng the 
designS and operation b were settled by multiparticle 
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programs. In particular, conditions mlnlmlzlng the 
transverse emittance growth were analysed and a strong 
preference for rather narrow beams found. 

However, some experiments have recently been performed 
confirming the importance of initial o£ values: a 
beam of 65 rnA has been accelerated and, contrary to 
previous runs, a smaller w value (~ 30°) has been 
chosen, so as to have the beam longitudinally stable 
at injection. As expected, the longitudinal output 
emittance decreased (by a factor of 0.57), but sur
prisingly the transverse one was also improved (fac
tors of 0.7 and 0.9 for 90% and 63% of beam, respec
tively). Perhaps this allows one to conclude that 
in each case an optimum combination of o£ and w can 
be found. 

Conclusion 

The following may be said concerning the CERN beam 
optics approach: 

1. It is complete in the sense that it contains pro
cedures for determining all the parameters of the de
sign; 

2. All design options were subsequently proved 
correct; 

3. Computed settings of accelerator parameters 
(focusing) are in general satisfactory, but correc
tioas are necessary in areas of high 0t values; 

t (maximum phase amplitude) 

- ~------

L Center of stable 

I region 

<1>0 
4>s (synchronous phase) 

stable region 

I'l/max 

(unstable fixed poinO 
I 

Fig. 1 Potential function for synchrotron 
motion with space charge. 

61' 0.425 

61' 085 

Fig. 2 Potential function with o£ as parameter. 

4. Phenomena such as emittance growth, in particular in 
the longitudinal plane, were underestimated by beam 
simulation programs, which, however, did not include 
steering errors. The qualitative dependence of these 
phenomena on machine and beam parameters was rightly 
foreseen. 

Finally it should be noted that the CERN approach was 
developed for "classical" proton linacs, where varia
tions in beam losses of the order of a percent are 
neglected. 
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Fig. 3 Separatrix and trajectory in the 6¢, 
6W plane with o£ as parameter. 
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Fig. 4 Phase damping in tank 1 of the new linac. 
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