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Surmnary 

Computer codes, which transform a number 
of pseudo-p;lrlil'lc~ Lilrollgh a ;-;iTlltilatt:'ci Illachine, 
form the backbone of accelerator design tech
niques. When minimization of beam loss within 
the machine is a primary design objective, it 
becomes necessary to consider beam behavior in 
detail, and questions of both the physics and 
computational aspects of the simulation are 
raised. Within the constraints of the former, 
the effectiveness of the latter can be increased 
for a given amount of computer resources by the 
use of statistical techniques. ,\ stat i sl ica] 
;l!ipruZlcll to ck'tl'n:linino;.: tlte TlU'(iT1lUl~l he;11'1 :-;i;:e and 
11l'ncL rcqllirl'd ;lp('rturL::' ()f ~l m;lcllinl=' i:--, descrihed 
;uld i 111].c.;tLltcd. rIll' nlelhud drcl\\.';"; upon ,c..;t;}

tisti cal theory to treat the maximum radius 
attained by a finite group of particles passing 
through an accelerator as a statistical vari
able. Once the distribution of this variable is 
obtained, radius values can be found inside 
which a given percentage of the particles can be 
expected. Confidence bounds can be placed on 
these radii, and the results used to estimate 
the suitability of the accelerator apertures. 

Introduction 

The estimation of beam spill has taken on 
greater importance in recent years with the call 
for higher currents in accelerators. L\SL 
interest in the problem arose from the need to 
estimate beam spill in the Fusion Material s 
Irradiation Test (FMIT) linac. Here three 
factors combine to make an accurate estimate 
necessary. These are the relatively high aver
age current (100 rnA cw), the acceleration of a 
deuteron beam with consequent higher radiation 
produced per lost particle, and the requirement 
for no remote handling during maintenance. 

At Los Alamos,the pARMILA code is used to 
transform particles through the six-dimensional 
phase space of a simulated machine. Because 
practical computing considerations limit the 
number of particles that can be followed to a 
few hundred or a few thousand, compared to 
108 -10 9 in the real beam, the code cannot be 
expected to give good answers concerning the 
absolute outer boundary of the beam even if the 
mathematical formulation of particle movement 
were exactly correct. 

The accuracy of the mathematical formula
tion is a problem in physics and code design. 

*Work performed under the auspices of the U. S. 
Department of Energy. 

hTitlt ;1L1\ ,i2,ivl'l1 llludc:, 1 , flOh"eVer, the prohlem:..; 

caused by following only a small sample can be 
alleviated by using statistical methods 1 ,2 to 
assess the position of the outer boundary. 

The Statistical Approach 

The parameter that determines beam spill 
is, in the final analysis, the maximum radius 
(rmax ) assumed by any particle in the bunch. 
The maximum radius is dependent on the focusing 
strength, the rf defocus in.~ in t!ll' I:ap,-'=;. 

space- charge (hence the beam current), the 
degree of mismatch, and the alignment and 
quality of the quadrupole magnets and drift 
tubes. All these factors are included in the 
PARMILA code model. 

Figure 1 shows the probability density 
function (pdf) for the physical radius of a beam 
of particles randomly selected from a uniform 
distribution in the four-dimensional transverse 
phase space. An actual pdf histogram for a 
typical sample of 500 particles is super
imposed. Such groups of particles are trans
ported through the accelerator code, and the 
maximum radius is observed at suitable inter
vals. (In the strong-focusing system used as 
the example here, the beam is observed at the 
center of each quadrupole.) Although the 
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The pdf for the radius of a typical 
input particle distribution is shown 
by the solid curve, along with the 
histogram resulting from an actual 
sample of 500 particles. The dashed 
curve is a hypothetical pdf observed 
in accordance with the output 
criterion. A particular rmax for 
the sample will occur. 
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Fig. 2. Histogram of the maximum radius 
observed anywhere in a section of 
linear accelerator in 100 runs of 

1.169 

500 particles each. Scales unrelated 
to Fig. 1. 

initial distribution is usually bounded, parti
cles that are not properly accelerated or trans
ported may reach arbi trari 1y large radii, except 
that they would strike some limiting physical 
surface in a real machine. The r max ' observed 

'at any particular point, or over a suitable 
length of machine that integrates over the vari
ous oscillation effects, also may be considered 
a random variable. A series of simulations 
starting with different particle samples fr~m 
the initial distribution, will yield a set of 
maximum radii with a probability distribution of 
their own, indicated in Fig. 2. 

Let rCr) = F' (r) be tll<-' pdf of the 
distribution of radii in the region of interest, 
then F(r) is the probability that an observed 
radius is less than a certain r. The proba
bility that n independent observations all fall 
short of r is then Fn(r). i.e, this is the 
probability that r is th~ l.rgest among n inde
pendent observations. Let ¢ (r ) be the 

. . n n 
probablllty that the largest value falls short 
of rn: 

Then the derivative, 

is the distribution of the largest among n inde
pendent observations. These equations form the 
ba~is for an exact theory of extreme values, 
WhlCh proceeds to explore whether asymptotic 
distributions valid for large samples exist, 
their nature, how quickly they are approached, 
and how to estimate their parameters from sample 
data. 

The parameters used to characterize the 
pdf of the extremes, ¢(r), are the expected 

vallie of the extrprnes, lin' anrl. the parClffiC'tprs 

~ = nf(lI l1 ). II can b" shown th<1t: 

cltl 
n 

Mlog n) ('J 
n 

whi ch i ndi catps that 1 /~ m""Sllr·,'S the 
increase of the expected 1argpst value with th" 
10gari thm of the sample size. Distributions 
fall into three c1assps, depending on whpthpr 
0 n incre3sC's, remains constant, or decreases 
with n. This characteristic indicates that thp 
exponential function unrler1ips thp theory. Dis
tributions of extremes may also be p1acerl 
another way into three categorips: those that 
are tln1imiterl (in one or both directions) wherp 
all moments exist, unlimited rlistributions with 
only a fini te number of moments, and 1 imi ted 
(11 stributi ons. 

The distributions of the extremes share 
properties with their unrlerlying population dis
tribution: limited (or not) to left or right, 
possession of moments, and asymptotic behavior 
dependent on the behavior of the parent distri
bution. It is erroneous, however, to assume 
that the distribution of extremes is normal or 
tends to normal; most distributions of extreme 
values are skewed and remain that way in the 
asymptote. The few symmetric rlistributions to 
be found are not normal. It is seen that the 
em p i ric alp d fin Fig. 2 i s b 0 un d edt 0 the 1 eft , 
skewed, and could be unlimited to the right. 

As with other types of probability distri
butions, rules are derived for estimating the 
parameters, for estimates of extrapolated 
values, and for confidence bounds on the esti
mates. The appropriate probability paper can be 
derived; probability paper provides the simplest 
way to evaluate whether an observed distribution 
fits the theory (the data would plot on a 
straight line), and to make estimates. The 
fitted distribution provides a best guess as to 
how an infinite number of particles would 
behave. The effect of the finiteness of the 
original data is now apparent only in the confi
dence bounds on the fitted distribution. The 
fitted distribution can now be used to provide 
estimates of the maximum radius inside which a 
given percentage of maximum radii will be found. 

Application 

The linac data fit an extreme value dis
tribution used by Weibull, which also finds wide 
use in reliability theory. The cumulative 
Weibull distribution is described by 

F(r) = 1 - e ex 

where ex is called the scale parameter, R is 
the shape parameter, and y is the location 
parameter.3 Figure 3 shows the data of Fig. 2 
plotted on Weibull probability paper. The vari
able x = r - y is plotted versus F. The 
points are seen to very closely approximate a 
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One hundred values of rmax (from 100 
PARMlLA runs using independent input 
distributions of 500 particles each) 
plotted on Weibull coordinates. The 
straight line is the fitted Weibull 
distribution. 

straight line. Chi-square goodness-of-fit tests 
were made and show that the Wei bull distribution 
provides a suitable description. 

When good confidence bounds are required, the 
number of runs needed to determine the distribution 
will be fairly large. For parameter searches, 
however, as few as 10 runs can suffice. Estimates 
of the parameters of the distribution can be 
obtained from the plot; a computer program was 
written which accomplishes this by direct fitting 
of the data. Computer codes are being developed 
to produce maximum likelihood estimates of the 
parameters and to find the confidence bounds on 
the parameters and the distribution. 

In the accelerator cases studies, the average 
value of the observed extremes is very close to 
the Weibull median value. Thus the mean r 

max 
derived from a small number of runs, say 10, can 
be used as a quick measure to plot the effects of 
changes in the accelerating conditions. Figure 4 
shows an example of the variation in r in 

max 
sections of particular bore size of the FMIT linac 
as a function of how well the input beam is 
matched. 
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Fig. 4. Average rmax observed in 10 runs at 
each condition, in a study of the 
maximum beam size in lengths of the 
FMIT drift-tube linac having a certain 
bore size, as the match of the input 
beam is changed by varying the input 
beam size. Bx and By were 
varied independently. 

Another way of obtaining a quick estimate 
of the radius containing a given percentage of 
the maxima that would ever be observed, without 
fitting the distribution, is provided by median 
rank order statistics. 4 For example, with a 
sample of size 25, the largest of the 25 values 
corresponds to 97.3% of all maxima that would be 
observed. These points are shown on Fig. 5; 
each point corresponds to the largest of 
25 runs. The effect of 0.25-mm random misalign
ment error is also shown. There is much more 
uncertainty in Fig. 5 than in Fig. 4, because 
the 97.3% estimate is based on less data than is 
the mean. 

Conclusion 

The observed extreme values from linear 
accelerator computer programs fit the statistical 
theory for extreme values very well. This 
theory should be used to develop estimates for 
beam spill in these machines. Although better 
models of the particle physics may also be 
needed, many of the effects of finite sample 
sizes are avoided by using the statistical 
approach. Work is progressing on ioentifying 
more precisely the characteristics of the parti
cular distributions involved in the linac 
problem, programs for fitting data and calcu
lating confidence bounds, and application of the 
results to jUdgments concerning the appropriate 
safety factors in accelerator design. 
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For the matching experiment shown in 
Fig. 4, the maximum rmax in each 
series of 25 runs for each condition 
is plotted. These values, within a 
known uncertainty, should be greater 
than or equal to 97.3% of all maximum 
radii that would be observed as the 
number of runs increased. 
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