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StmDlary 

Several ~ethods are presented for determining 
the shape parameters, which in two dimensions 
are the Courant-Snyder parameters, and the 
volume of an ellipse or hyperellipse that 
represent a set of phase-space points in a two 
or more dimensional hyperspace. The ellipse 
parameters are useful for matching a beam to an 
accelerating or transport system, and in studies 
of emittance growth. The fitting procedure 
minimizes the total volume of a hyperellipse by 
adjusting the ellipse shape parameters. The 
total volume is the sum of the individual 
particle volumes defined by the hyperellipse 
that passes through a particle's phase-space 
point. A two-dimensional space is treated 
pirst, then generalized to higher dimensions. 
Computer programs using these techniques have 
been written. 

Two-Dimensional Case 

The equation for an ellipse may be written 

yx2 + 2axy + Sy2 = E/n 

yS - a 2 - I = 0 

A 

where a, Sand yare t he Co ur ant and Snyder 
parameters i and E is the area of the ellipse. 
The emittance required for an ellipse centered 
at the origin to encompass a particle with 
phase-space coordinates xi,Yi is 

If there are N particles and each particle has 
an emittance, Ai (i = I,N), a total summed 
emittance can be defined as: 

N 

(1) 

(2) 

(3) 

I L A· 1. 
(4a) 

i=1 

The rms ellipse parameters minimize I. 
These parameters are found most easily by multi
plying Eq. (2) by a Lagrange multiplier A; 
adding the product to Eq. (4a), gi ving J 
[Eq. (4b)1; differentiatingJ bYa, S, y, and A, 
respectively; and setting the result to zero. 
The Lagrange multiplier allows a, S, and y to be 
treated as independent variables. It is found 
that with 

*Work performed under the auspices of the U.S. 
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J = I + A (yS - a 2 - 1) (4b) 

the results are 

L Yi 
2 L X

/ y , S a 
D D 

and 

Vrx D LY/ - ( LXiy~2 
which is a standard method for fitting an rms 
ellipse to a distribution. 

(5) 

If the emittance is defined to be the ellipse 
area that encompasses all of the beam, then to 
determine the ellipse parameters that minimize 
this area, requires use of a fitting procedure 
that most heavily weights those beam particles 
that lie farthest from the centroid of the 
distribution. This is done by using Ai 2 
instead of Ai in Eq. (4a), 

J = L Ai 2 + A(YS - a2 - 1) (6) 

Minimizing J with respect to a, S, y, and A then 
eliminating A gives [see Eq. (3)] , 

yS - a2 - I 0 

a LAiYi2 + Y LAiXiYi 0 

and 

a LA.x.2 1. 1. + S LA.X·Y· 1. 1. 1. = 0 

Equations (2), (3), (7), and (8) define a, S, 
and y. An iteration procedure issued to solve 
these equations. 2 The starting values for the 
ptocedure may be obtained from Eq. (5). 

( 2) 

(7) 

(8) 

Figure I compares the results of fitting an 
ellipse to the given set of points using both 
methods described above. For this distribution 
the weighted fitting method (dashed line) gives 
an ellipse with a smaller area. 

Finally, it was assumed that the particle 
distribution is centered about the origin. This 
deficiency can be corrected by substituting 
(xi - xo) for Xi and (Yi - Yo) for Yi 
in Eq. (3) then minimizing Eq. (4b) or Eq. (6) 
with respect to Xo and Yo' where (xo'Yo) 
is the origin of the ellipse. 
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Fig. 1 Weighted and rms ellipses that encompass 
all particles. 'TIle inner ellipse 
(dashed line) resulted from the "weighted" 
fit. 

Higher Dimensional Hyperellipsoid 

The equation of a hyperellipse in an 
n-dimensional hyper-space is: 

{9) 

where A is an n x n -dimensional symmetric 
matrix-and X is an n-dimensional column vector. 
Given a set of k points (particles) represented 
by Xi (i - l,k) in this hyper-space, the hyper
ellipse defining matrix ~ that best represents 
this set of points is found. The fit is by 
minimizing the volume enclosed by the hyper
ellipse characterized bv the data. 
The technique 3 of minimizing the function, 

I 

k 

~ (XiT~Xi - 1)2 
i-I 

with respect to the elements of the symmetric 
matrix ~was not considered. This technique mini
mizes the distances between the data points and the 
surface of the hyperellipsoid defined by ~. 

An explicit relationship between the volume 
of the hyperellipsoid and the shape-defining par
ameters of the ellipse was first obtained. The 
volume of an n-dimensional upright ellipsoid, 

n X. 2 

Note that the sum in Eq. (10) and the product in 
Eq. (11) are over the n-dimensional vector 
space, not over the particle coordinates. Now 
let U be an orthogonal matrix that diagonalizes 
A, Eq. (9), let D be the resulting diagonal 
matrix, (D - UAUT): and let Y be the 
transformed vector, (y - UX). Then, 

yTDy - 1 (12) 

Equation (12) is in the form of Eq. (10) with 
components of E, 

D .. 
-1J 

O' . 1J 

~ 
J 

( 13) 

where Oij is the Kronecker delta function. 
Using the determinant of E, symbolized by lEI, 
it is found that: 

d.
2 

1 ]

-1 - (K~:) r -I~I (14) 

The determinant value is invariant under an 
orthogonal transformation. Define a new 
matrix B whose elements are 

(Vn )2/n 
A .. B .. - KTnJ -1J -1J 

then, 

I~I - [(J.,) 2/n r IAI - 1 

From Eq. (9), it is found that: 

XTBX (Vn r KTnJ 

with 

I~I -

Note that with n - 2, 
The hyperellipse 

Eq. on, is 

Eq. (1) is obtained. 
volume, determined from 

(15) 

(16) 

(1n 

(8) 

(9) 

The hyperellipse volume (or some power of 

L 1 

d. 
i-I 1 

2 (10) the volume) is minimized for k particles in an 
n-dimensional hyper-space. Define 

with 

V 
n 

semi axes of 

n 

K(n) n d. 
i-I 1 

length d. 
1 

K(n) 

is 

n/2 
IT 

(11) 

k 
I ~ (20) 

i-I 

where i is the sum over k particles, m is an 
exponent, n is the hyper-space dimension,and A 
is a Lagrange multiplier. Let B be 
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symmetric. Substituting Eq. (19) into 
Eq. (20) and absorbing the K(n) term into the 
Lagrange multiplier, yields 

I ( 21) 

The matrix B is determined by minimizing I with 
respect to each element ~ij and A, giving the 
series of equations 

o (i < j - 1, ... , n) 
(22 ) 

ClI/ClA 0 

The restriction (i .:::.- j - 1, ... , n) accounts for 
! being symmetric (!ij - !ji). Equation (22) is 
used to solve for B. In all but the simplest 
cases, Eq. (22) will be nonlinear and will have 
to be solved by an iterative approximation scheme. 
If the distribution has a non-zero centroid, 
(Xi - Xo) can be substituted for Xi in Eq. (21) 
which can be minimized with respect to Xo. 

Given the ellipse in Eq. (17), the projer.ted 
area in the two-dimensional plane defined by £ 
m can be found. The gradient of Eq. (17) can be 
used to obtain 

2 L i 

i 

B .. X. 
-~J J 

(23) 

where i and j are vector, not particle, indices. 
The maximum projection of Eq. (17) occurs 

where the coefficients of i (i * 9" m) are 
zero. This gives (n - 2) relations of the form 

B .. X. 
~J J 

o (i *9" m) (24) 

which can be used to solve for Xj (j * £, m) 
in terms of X9, and~. SubstHute these 
relations in Eq. (17) to get 

(25) 

The area of this ellipse is 

A (26) 
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